

INTRODUCTION

- Impaired for bacteria, PCBs, mercury, and dioxin
- Multiple beach advisories posted since 2003
- Wetland-dominated land use

BACKGROUND

GOAL	Restore water quality in Parsons Creek by reducing stormwater runoff from IC and bacterial input from malfunctioning septic systems.						
2004	NHDES Beach Program Monitoring						
2008	NHDES/FBE Watershed Monitoring						
2010	NH TMDL for Bacteria Reductions (89% reduction in geomean)						
	Based on 2008-2010 intensive watershed-wide bracket sampling						
2011	Parsons Creek Watershed Based Plan (estimated 24% septic failure)						
	Identified stormwater and septic as primary sources of bacteria						
2012	Parsons Creek Watershed Management Plan Implementation, Phase I						
	Installed 4 BMPs; reduced bacteria by 3.3x10^10 col/100mL						
	Developed septic database and risk factor priority map						
2015	Parsons Creek Watershed Management Plan Implementation, Phase II						
	Will install 2-4 BMPs						
	Will draft septic ordinance and replace 2 septic systems in failure						

Example BMPs

Marsh Road – Buffer Plantings

BEFORE

AFTER

SEPTIC SYSTEMS

BACTERIA RESULTS (2008-2015)

CANINE SCENT TRACKING (2013)

BEACH SAMPLING (2014-15)

Overnight beach seep and Parsons Creek outlet sampling results.

14:00 14:30 Sample ID Date 11:30 12:00 12:30 13:00 13:30 15:00 15:30 8/24/2015 31 63 63 41 75 20 20 30 PC-out 41 8/24/2015 5 228 5 RB-1 243 20 5 20 5 10 8/24/2015 RB-2 197 8164 10 5 10 5 8/24/2015 5 RB-3 0:00 3:30 Date 0:30 1:00 1:30 2:00 2:30 3:00 Standard Sample ID 8/25/2015 292 PC-out 226 262 479 504 355 216 504 <406 RB-1 8/25/2015 5 5 5 10 20 <104 RB-2 8/25/2015 5 10 5 5 5 5 <104 10 8/25/2015 5 10 41 30 8 10 5 <104 RB-3

BACTERIA RESULTS (2015)

Site	7/28/15 (<u>DRY</u>)	9/3/15 (<u>DRY</u>)	9/11/15 (<u>WET</u>)	9/23/15 (<u>DRY</u>)	9/30/15 (<u>WET</u>)	10/20/15 (<u>WET</u>)	Description	Routing
BCH08						990	East Branch	Upstream
BCH10						2,098	East Branch	
BCH11	4,884	18,963	>24,200	139	3,076	20	East Branch	
BCH13	3,873	2,909	>24,200	10	1,935	31	East Branch	
BCH26A	85	959	2,909	187	4,352	345	East Branch	
BCH26	20	686	7,270	<10	11,199	74	Side ditch, East Branch	
ACPS005-U15	84	464	2,723	431	4,352	109	West Branch	V
PC-OUT	20	504	1,274	74	1,333	10	Outlet to Ocean	Downstream

- High bacteria coming from BCH11 (at Marsh Rd) following wet and dry weather and from BCH26 (at Wallis Rd) following wet weather
- Late September-October sampling shows shift in dominant bacteria sources (to BCH26 and upstream BCH08/10 (seasonal use change?)

WHY WE NEED MORE DATA This Fall

SRF PROPOSAL DETAILS – Sally Soule/Barbara McMillan

- SRF program overview
- Purpose why SRF for Parsons Creek?
- Status approved borrowers list
- Loan terms
- Next steps and timeline

Horsley Witten Group, Inc. (a little background)

- 27 years in business, headquartered in Sandwich, MA
- Environmental Engineering, Planning, Landscape Architecture, Emergency Preparedness, Remediation, Surveying and Ecological Services
- 50+ employees with offices in MA, RI, GA and now in Exeter, NH -11 PEs, 2 RLSs, 2 RLAs
- Significant coastal experience with wastewater assessment, design, and construction admin.
- System installed ranging from single septic systems, clustered systems up to 50k gpd, to 0.5 mgd for Mass Dept. of Correction

Rhode Island Salt Pond Wastewater Facilities Plan

Service Area/Parcel Assessment

Septic Disposal Options – shallow depth to groundwater

Bottomless sand filter

Shallow-narrow drain field

Treatment systems

Orenco's – AdvanTex Trickling Filter

"Innovative/Alternative Systems

- Several Alternative Systems:
 - Recirculating Sand Filter;
 - Ruck Systems
 - FAST
 - Bioclere
 - AdvanTex
 - Nitrix
 - Waterloo Biofilter
 - Many others

Parson's Creek Scope of Work

1. Project Coordination

 Up to 6 meetings, including at least one with Selectmen

2. Public Outreach

- Two public meetings (gage interest and concept design stage)
- One ½ day owner workshop
- 3. Community Septic System Facility Assessment and Conceptual Design
- 4. Final Feasibility Report

Task 3: Facility Assessment and Conceptual Design

- Finalize Evaluation Assessment Areas
- Refine Risk Assessment
- Map Candidate Septic Disposal Areas
 - Conduct up to 8 test pits
- Complete Conceptual Designs
- Perform Pollutant Loading Analysis
- Develop Implementation Plan

THANK YOU

