

CMA ENGINEERS, INC. CIVIL | ENVIRONMENTAL | STRUCTURAL

35 Bow Street Portsmouth New Hampshire 03801-3819

P: 603|431|6196 www.cmaengineers.com

July 6, 2017

Mr. Michael Magnant, Town Administrator Town of Rye Town Office 10 Central Road Rye, NH 03870

RE: Breakfast Hill Landfill

PFC Groundwater Results - May 2017

CMA #527

Dear Michael Magnant:

Please find enclosed the groundwater monitoring results from the May 2017 water quality sampling event for perflourinated compounds (PFCs) at the Breakfast Hill Landfill in Rye. The wells were sampled on May 24, 2017 by Eastern Analytical of Concord, NH and analyzed by ALS Environmental of Kelso, WA on June 9, 2017.

The ambient groundwater quality standard (AGQS) is 70 ng/L for either perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS), and for both PFOA and PFOS combined where these chemicals are present together.

A summary of PFOA and PFOSs concentrations detected in the Breakfast Hill Landfill water samples is provided below:

Well Location	Perfluorooctanoic acid (PFOA) (ng/L)	Perfluorooctane sulfonic acid (PFOS) (ng/L)	PFOA + PFOS combined (ng/L)
MW-1A	3.3	5.8	9.1
MW-4A	46	36	82
MW-6A	67	7	74
MW-7B	22	Not detected	22
MW-10	45	23	68

We note that CMA Engineers will provide a presentation of these results to the Board of Selectman at the meeting on Monday July 10, 2017. We note that MW-4A and MW-6A are within the Groundwater Management Zone established for the site, and that the Town of Rye in recent years has adopted a zoning overlay of certain downgradient areas precluding the use of groundwater for drinking water purposes.

Submission of the regular groundwater sampling results, in accordance with the groundwater management permit, will occur under separate cover.

If you have any questions regarding these results, please don't hesitate to contact us.

Very truly yours,

CMA ENGINEERS, INC.

Jodie Bray Strickland, P.E.

Jodie Bray Strickland

Project Engineer

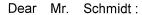
Enclosures: Eastern Analytical Inc. Laboratory Report, May 24, 2017

Breakfast Hill Landfill Site Plan

cc: Ken Aspen, Rye Water District

Paul Rydel, P.G., NH DES

professional laboratory and drilling services


Paul Schmidt
CMA Engineers, Inc. (Manchester)
Langler Place, 55 South Commercial St.
Manchester, NH 03101

Subject: Laboratory Report

Eastern Analytical, Inc. ID: 169123

Client Identification: Rye - Breakfast Hill LF

Date Received: 5/24/2017

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.eailabs.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:

Solid samples are reported on a dry weight basis, unless otherwise noted

< : "less than" followed by the reporting limit</p>

> : "greater than" followed by the reporting limit

%R: % Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269) and Vermont (VT1012).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample(s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

Lorraine Olashaw, Lab Director

6.28.17

of pages (excluding cover letter)

SAMPLE CONDITIONS PAGE

EAI ID#: 169123

Client: CMA Engineers, Inc. (Portsmouth)
Client Designation: Rye - Breakfast Hill LF

Temperature upon receipt (°C): 3.1

Received on ice or cold packs (Yes/No): Y

A acceptable	tananauat		(90).00	
Acceptable	temperature	range	(°C) · D-6	

Lab ID	Sample ID	Date Received	Date I Sampled	Sample % Dry Matrix Weight	Exceptions/Comments (other than thermal preservation)
169123.01	MW-1 A	5/24/17	5/24/17	aqueous	Adheres to Sample Acceptance Policy
169123.02	MW-4 A	5/24/17	5/24/17	aqueous	Adheres to Sample Acceptance Policy
169123.03	MW-6 A	5/24/17	5/24/17	aqueous	Adheres to Sample Acceptance Policy
169123.04	MW-7 B	5/24/17	5/24/17	aqueous	Adheres to Sample Acceptance Policy
169123.05	MW-10	5/24/17	5/24/17	aqueous	Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitability, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

Immediate analyses, pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite, performed at the laboratory were run outside of the

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

recommended 15 minute hold time.

- 2) Standard Methods for Examination of Water and Wastewater, 20th Edition, 1998 and 22nd Edition, 2012
- 3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB
- 4) Hach Water Analysis Handbook, 2nd edition, 1992

EAI ID#: 169123

Client: CMA Engineers, Inc. (Manchester) Client Designation: Rye - Breakfast Hill LF

Sample ID:	MW-1 A	MW-4 A	MW-6 A	MW-7 B				
Lab Sample ID:	169123.01	169123.02	169123.03	169123.04				
Matrix:	aqueous	aqueous	aqueous	aqueous				
Date Sampled:	5/24/17	5/24/17	5/24/17	5/24/17		ıA	nalysis	
Date Received:	5/24/17	5/24/17	5/24/17	5/24/17	Units	Date	•	e Method Analyst
Chloride	270	59	8	13	mg/L	05/25/17	10:30	4500CIE-97 KD
Nitrate-N	< 0.5	< 0.5	9.7	< 0.5	mg/L	05/25/17	9:57	353.2 KD
TKN	< 0.5	1.1	< 0.5	< 0.5	mg/L	06/07/17	13:18	4500N _{org} C/N SEL

Sample ID:	MW-10	
Lab Sample ID:	169123.05	
•	103123.03	
Matrix:	aqueous	
Date Sampled:	5/24/17	Analysis
Date Received:	5/24/17	Units Date Time Method Analyst
Chloride	200	mg/L 05/25/17 10:33 4500CIE-97 KD
Nitrate-N	0.8	mg/L 05/25/17 10:17 353.2 KD
TKN	1.6	mg/L 06/07/17 13:42 4500N _{ora} C/N SEL

LABORATORY REPORT

EAI ID#: 169123

Client: CMA Engineers, Inc. (Manchester) Client Designation: Rye - Breakfast Hill LF

Sample ID:	MW-1 A	MW-4 A	MW-6 A	MW-7 B				•	
Lab Sample ID:	169123.01	169123.02	169123.03	169123.04					
Matrix:	aqueous	aqueous	aqueous	aqueous					
Date Sampled:	5/24/17	5/24/17	5/24/17	5/24/17	Analytical	•	Date of		
Date Received:	5/24/17	5/24/17	5/24/17	5/24/17	Matrix	Units	Analysis	Method	Analyst
Iron	< 0.05	2.1	< 0.05	6.7	AqDis	mg/L	5/26/17	200.7	JCS
Manganese	0.11	13	0.027	3.9	AqDis	mg/L	5/26/17	200.7	JCS

Sample ID:

MW-10

Lab Sample ID: 169123.05 Matrix: aqueous Date Sampled: 5/24/17 Date Received: 5/24/17 0.89 Iron 1.7 Manganese

Analytical Date of Matrix Units Analysis Method Analyst AqDis mg/L 5/26/17 200.7 JCS AqDis mg/L 5/26/17 JCS 200.7

Sample ID:

LABORATORY REPORT

EAI ID#: 169123

Client: CMA Engineers, Inc. (Manchester)
Client Designation: Rye - Breakfast Hill LF

Sample ID:	MW-1 A	MW-4 A	MW-6 A	MW-7 B				
Lab Sample ID:	169123.01	169123.02	169123.03	169123.04				
Matrix:	aqueous	aqueous	aqueous	aqueous				
Date Sampled:	5/24/17	5/24/17	5/24/17	5/24/17		Date of		
Date Received:	5/24/17	5/24/17	5/24/17	5/24/17	Units	Analysis	Method	Analyst
Static Water Level	14.59	17.42	31.33	40.85	ft	5/24/17	Field	JG
Field pH	6.2	6.1	6.4	6.3	SU	5/24/17	SM4500	H JL
Field Conductivity	920	420	620	590	uS/cm	5/24/17	SM2510	B JL

Lab Sample ID: 169123.05

Matrix: aqueous

MW-10

Date Sampled: 5/24/17 Date of Date Received: Units Analysis Method Analyst 5/24/17 Static Water Level 25.36 ft 5/24/17 JG Field Field pH 6.4 SU 5/24/17 SM4500H JL JL Field Conductivity 1100 uS/cm 5/24/17 SM2510B

June 23, 2017

Jennifer Laramie

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626
T:+1 360 577 7222

F:+1 360 577 7222

www.alsglobal.com

Analytical Report for Service Request No: K1705369

Eastern Analytical, Inc. 25 Chenell Dr Concord, NH 03301

RE: 169123

Dear Jennifer,

Enclosed are the results of the sample(s) submitted to our laboratory May 26, 2017 For your reference, these analyses have been assigned our service request number **K1705369**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3275. You may also contact me via email at Chris.Leaf@ALSGlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Project Manager

Page 1 of 29 5

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLCMS

Raw Data

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLCMS

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	_
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Page 6 of 29 10

ALS ENVIRONMENTAL

Client:

Eastern Analytical, Inc.

169123

Service Request No.: Date Received:

K1705369 05/26/17

Project: Sample Matrix:

Water

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier IV validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Five water samples were received for analysis at ALS Environmental on 05/26/17. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

No other anomalies associated with the analysis of these samples were observed.

Approved by

Page 7 of 29

11

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Page 8 of 29 12

CHAIN-OF-CUSTODY RECORD eastern analytical professional laboratory services

				EALIC	EAI ID# 169123	rage -
Sample ID	Date Sampled Matrix	aParameters			Sample Notes	tes
MW-1 A	5/24/2017 aqueous 14:58	Subcontract - PFCs EPA Method 537 9 Compound List (ALS)	nod 537 9 Compound List (Al	_S)		
MW-4 A	5/24/2017 aqueous 14:46	Subcontract - PFCs EPA Method 537 9 Compound List (ALS)	nod 537 9 Compound List (Al	LS)		
MW-6 A	5/24/2017 aqueous 14:26	aqueous Subcontract - PFCs EPA Method 537 9 Compound List (ALS)	nod 537 9 Compound List (Al	LS)		
MW-7 B	5/24/2017 aqueous 14:09	Subcontract - PFCs EPA Method 537 9 Compound List (ALS)	hod 537 9 Compound List (A	LS)		
7	Project State: NH Project ID: 104	1	erred date	PO #: 46245 Please call prior to	EAI ID# 169123 analyzing, if RUSH surcha	#: 46245 EAI ID# 169123 Please call prior to analyzing, if RUSH surcharges will be applied.
company ALS I Address 1317 Address Kelso Account#	ALS Environmental (WA) 1317 South 13th Ave Kelso, WA 98626	Notes about project: Email pdf of results and invoice to customerservice@eailabs.com.	invoice to bs.com.	Samples, Collected	<u>рате/Тіме</u>	Received by
Phone # (360) 430-7733	430-7733	_		Relinguished by	5/26/17 0920 Date/Time	Received by
Fax Number Easterr	Eastern Analytical, Inc. 25 Chenell Dr. Concord, NH 03301	: Concord, NH 03301	Phone: (603)228-0525	1-800-287-0525	Fax: (603)228-4591	•

Sample Notes

Sample ID MW-10 Date Sampled Matrix 5/24/2017 aqueous | Subcontract - PFCs EPA Method 537 9 Compound List (ALS) aParameters

As a subcontract lab to EAI, you will defend, indemnify and hold Eastern Analytical, Inc., its officers, employees, and agents harmless from and against any and all liability, loss, expense or claims for injury or damages are caused by or result from the negligent or intentional acts or omissions of you as a subcontract lab, your officers, agents or employees

Fax Nur

PC CC

Cooler Receipt and Preservation Form

Samples Were cu If preser	s were rece s were rece ustody seals nt, were cu	ived in: (ci	USPS	5/36/1 Fed Ex	(UP.	Charles of the Control of the Contro	Ш				By:	
If preser	nt, were cu	2 012 000101	5 7	Cooler NA Y	Box	Env	relope	PDX Co Other ow many and		and Delivered	_ NA	
or Temp	- 1212 - 1700 I	stody seals		Y		, ,	-	sent, were the	-	d dated?	Y	N
	Corrected.	Rew	Corrected	Соп.		ometer	Coole	r/COC ID		Tracking Nun	nber	
	2.7	Temp Blank	Temp Blank	Pactor 0.0	329	D	169	123	12×46	599019703	3340	NA FII
	-											
acking	material:	Inserts	Baggies	Bubble Wi	ap Ge	l Packs	(Wet Id	Dry Ice	Sleeves			
Vere cu	stody pape	rs properly	/ filled out ((ink, signed	l, etc.)?					Ŋ	NA (Y)	N
Vere sai	mples rece	_		-				in the table		N	NA (Ÿ)	N
ere all	sample lah		olicable, tiss ete (i.e analy	-			Froz	en Partia	lly Thawed	Thawed	ia (Ŷ)	·N
		_	-	-			aior disc	repancies in	the table of		NA (Y)	N
	•	_	ainers and				-	-		. •	va (y)	N
Were th	e pH-prese	rved bottle	s (see SMO	GEN SOP)	received	at the ap	opropriat	epH? <i>Indic</i>	ate in the ta	ble below (N	VA) Y	N
Were V	OA vials re	eceived wi	thout heads	pace? Indi	cate in t	he table	below.			A	VA) Y	N
Was C1	2/Res nega	ntive?								(h	IA) Y	N
	ample ID or	Dollo.			Sample IE					identified by:	• .	
	atimpie 10 or	Lovere			iampie is	. 011 000				identified by.		
					- A							
	Sample ID		Bottle G	Count Ou Type Te	ut of Hea emp spa	d- ce Broke	pH	Reagent	Volume added	Reagent Lot Number	Initials	Time
		***	_			+	-					
·			+		+		1					
						+					1	
		· · · · · · · · · · · · · · · · · · ·			1	1	1 1			,	† †	
s, Discı	repancies	, & Resol	utions:									
										·		
												<u> </u>

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Page 12 of 29 16

Analytical Report

Client:

Eastern Analytical, Inc.

Service Request: K1705369 Date Collected: NA

Project:

Sample Matrix:

Water

Date Received: NA

Sample Name:

Batch QC

Units: ng/L

Lab Code:

K1705261-002

Basis: NA

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:

PFC/537M

Prep Method:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoropentanoic acid (PFPeA)	ND U	10	1	06/09/17 18:25	5/30/17	
Perfluorohexanoic acid (PFHxA)	2.1 J	10	1	06/09/17 18:25	5/30/17	
Perfluoroheptanoic acid (PFHpA)	ND U	10	1	06/09/17 18:25	5/30/17	
Perfluorooctanoic acid (PFOA)	0.74 ј	10	1	06/09/17 18:25	5/30/17	
Perfluorononanoic acid (PFNA)	ND U	10	1	06/09/17 18:25	5/30/17	
Perfluorobutane sulfonic acid (PFBS)	ND U	10	1	06/09/17 18:25	5/30/17	
Perfluorobutanoic acid (PFBA)	1.1 J	10	1	06/09/17 18:25	5/30/17	
Perfluorohexane sulfonic acid (PFHxS)	1.2 Ј	10	1	06/09/17 18:25	5/30/17	
Perfluorooctane sulfonic acid (PFOS)	5.5 J	10	1	06/09/17 18:25	5/30/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C5-PFPeA	94	50 - 150	06/09/17 18:25	
13C3-PFBS	79	50 - 150	06/09/17 18:25	
13C4-PFHpA	99	50 - 150	06/09/17 18:25	
13C2-PFHxA	80	10 - 151	06/09/17 18:25	
18O2-PFHxS	88	20 - 128	06/09/17 18:25	
13C4-PFOA	82	13 - 142	06/09/17 18:25	
13C5-PFNA	84	15 - 143	06/09/17 18:25	
13C4-PFOS	70	11 - 131	06/09/17 18:25	
13C4-PFBA	83	19 - 126	06/09/17 18:25	

Analytical Report

Client:

Eastern Analytical, Inc.

Project:

Service Request: K1705369

Date Collected: 05/24/17 14:58

Sample Matrix:

Water

Date Received: 05/26/17 09:20

Sample Name:

MW-1A

Units: ng/L

Lab Code:

K1705369-001

Basis: NA

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:

PFC/537M

Prep Method:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoropentanoic acid (PFPeA)	ND U	3.6	1	06/19/17 19:06	6/6/17	
Perfluorohexanoic acid (PFHxA)	ND U	3.6	1	06/19/17 19:06	6/6/17	
Perfluoroheptanoic acid (PFHpA)	ND U	3.6	1	06/19/17 19:06	6/6/17	
Perfluorooctanoic acid (PFOA)	3.3	1.4	1	06/19/17 19:06	6/6/17	
Perfluorononanoic acid (PFNA)	ND U	3.6	1	06/19/17 19:06	6/6/17	
Perfluorobutane sulfonic acid (PFBS)	ND U	3.6	1	06/19/17 19:06	6/6/17	
Perfluorobutanoic acid (PFBA)	ND U	7.1	1	06/19/17 19:06	6/6/17	
Perfluorohexane sulfonic acid (PFHxS)	ND U	3.6	1	06/19/17 19:06	6/6/17	
Perfluorooctane sulfonic acid (PFOS)	5.8	3.6	1	06/19/17 19:06	6/6/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C5-PFPeA	96	50 - 150	06/19/17 19:06	
13C3-PFBS	59	50 - 150	06/19/17 19:06	
13C4-PFHpA	85	50 - 150	06/19/17 19:06	
13C2-PFHxA	97	10 - 151	06/19/17 19:06	
18O2-PFHxS	78	20 - 128	06/19/17 19:06	
13C4-PFOA	98	13 - 142	06/19/17 19:06	
13C5-PFNA	89	15 - 143	06/19/17 19:06	
13C4-PFOS	65	11 - 131	06/19/17 19:06	
13C4-PFBA	89	19 - 126	06/19/17 19:06	

Analytical Report

Client:

Eastern Analytical, Inc.

Project:

Date Collected: 05/24/17 14:46

Service Request: K1705369

Sample Matrix:

Water

Date Received: 05/26/17 09:20

Sample Name:

Units: ng/L

Lab Code:

MW-4A

K1705369-002

Basis: NA

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:

PFC/537M

Prep Method:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoropentanoic acid (PFPeA)	6.2	3.4	1	06/09/17 20:20	5/30/17	
Perfluorohexanoic acid (PFHxA)	12	3.4	1	06/09/17 20:20	5/30/17	
Perfluoroheptanoic acid (PFHpA)	6.4	3.4	1	06/09/17 20:20	5/30/17	
Perfluorooctanoic acid (PFOA)	46	1.4	1	06/09/17 20:20	5/30/17	
Perfluorononanoic acid (PFNA)	ND U	3.4	1	06/09/17 20:20	5/30/17	
Perfluorobutane sulfonic acid (PFBS)	ND U	3.4	1	06/09/17 20:20	5/30/17	
Perfluorobutanoic acid (PFBA)	ND U	6.9	1	06/09/17 20:20	5/30/17	
Perfluorohexane sulfonic acid (PFHxS)	4.9	3.4	1	06/09/17 20:20	5/30/17	
Perfluorooctane sulfonic acid (PFOS)	36	3.4	1	06/09/17 20:20	5/30/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q ,
13C5-PFPeA	106	50 - 150	06/09/17 20:20	
13C3-PFBS	90	50 - 150	06/09/17 20:20	
13C4-PFHpA	111	50 - 150	06/09/17 20:20	
13C2-PFHxA	94	10 - 151	06/09/17 20:20	
18O2-PFHxS	86	20 - 128	06/09/17 20:20	
13C4-PFOA	90	13 - 142	06/09/17 20:20	
13C5-PFNA	94	15 - 143	06/09/17 20:20	
13C4-PFOS	69	11 - 131	06/09/17 20:20	
13C4-PFBA	85	19 - 126	06/09/17 20:20	

Analytical Report

Client:

Eastern Analytical, Inc.

Service Request: K1705369

Project:

Sample Matrix:

Water

Date Collected: 05/24/17 14:26

Date Received: 05/26/17 09:20

Sample Name: Lab Code: MW-6A

K1705369-003

Units: ng/L Basis: NA

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:

PFC/537M

Prep Method:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q_
Perfluoropentanoic acid (PFPeA)	ND U	3.6	1	06/19/17 20:06	6/6/17	
Perfluorohexanoic acid (PFHxA)	8.5	3.6	1	06/19/17 20:06	6/6/17	
Perfluoroheptanoic acid (PFHpA)	13	3.6	1	06/19/17 20:06	6/6/17	
Perfluorooctanoic acid (PFOA)	67	1.4	1	06/19/17 20:06	6/6/17	
Perfluorononanoic acid (PFNA)	ND U	3.6	1	06/19/17 20:06	6/6/17	
Perfluorobutanoic acid (PFBA)	ND U	7.1	1	06/19/17 20:06	6/6/17	
Perfluorobutane sulfonic acid (PFBS)	ND U	3.6	1	06/19/17 20:06	6/6/17	
Perfluorohexane sulfonic acid (PFHxS)	5.2	3.6	1	06/19/17 20:06	6/6/17	
Perfluorooctane sulfonic acid (PFOS)	7.0	3.6	1	06/19/17 20:06	6/6/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C5-PFPeA	93	50 - 150	06/19/17 20:06	
13C3-PFBS	63	50 - 150	06/19/17 20:06	
13C4-PFHpA	84	50 - 150	06/19/17 20:06	
13C2-PFHxA	88	10 - 151	06/19/17 20:06	
18O2-PFHxS	71	20 - 128	06/19/17 20:06	
13C4-PFOA	82	13 - 142	06/19/17 20:06	
13C5-PFNA	76	15 - 143	06/19/17 20:06	
13C4-PFOS	56	11 - 131	06/19/17 20:06	
13C4-PFBA	78	19 - 126	06/19/17 20:06	

Analytical Report

Client: Project:

Eastern Analytical, Inc.

3......

Water

Service Request: K1705369

Date Collected: 05/24/17 14:09

Date Received: 05/26/17 09:20

Sample Name:

Sample Matrix:

MW-7B

Units: ng/L

Lab Code:

K1705369-004

Basis: NA

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:

PFC/537M

Prep Method:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoropentanoic acid (PFPeA)	9.0	3.6	1	06/09/17 20:31	5/30/17	
Perfluorohexanoic acid (PFHxA)	14	3.6	1	06/09/17 20:31	5/30/17	
Perfluoroheptanoic acid (PFHpA)	7.3	3.6	1	06/09/17 20:31	5/30/17	
Perfluorooctanoic acid (PFOA)	22	1.4	1	06/09/17 20:31	5/30/17	
Perfluorononanoic acid (PFNA)	ND U	3.6	1	06/09/17 20:31	5/30/17	
Perfluorobutanoic acid (PFBA)	8.4	7.1	1	06/09/17 20:31	5/30/17	
Perfluorobutane sulfonic acid (PFBS)	ND U	3.6	1	06/09/17 20:31	5/30/17	
Perfluorohexane sulfonic acid (PFHxS)	14	3.6	1	06/09/17 20:31	5/30/17	
Perfluorooctane sulfonic acid (PFOS)	ND U	3.6	1	06/09/17 20:31	5/30/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C5-PFPeA	105	50 - 150	06/09/17 20:31	
13C3-PFBS	95	50 - 150	06/09/17 20:31	
13C4-PFHpA	110	50 - 150	06/09/17 20:31	
13C2-PFHxA	92	10 - 151	06/09/17 20:31	
18O2-PFHxS	94	20 - 128	06/09/17 20:31	
13C4-PFOA	90	13 - 142	06/09/17 20:31	
13C5-PFNA	87	15 - 143	06/09/17 20:31	
13C4-PFOS	66	11 - 131	06/09/17 20:31	
13C4-PFBA	85	19 - 126	06/09/17 20:31	

Analytical Report

Client:

Eastern Analytical, Inc.

Project:

Service Request: K1705369

Date Collected: 05/24/17 13:52

Date Received: 05/26/17 09:20

Sample Matrix: Sample Name:

Water

Units: ng/L

MW-10

Basis: NA

Lab Code:

K1705369-005

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:

PFC/537M

Prep Method:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoropentanoic acid (PFPeA)	8.8	3.6	1	06/09/17 20:41	5/30/17	
Perfluorohexanoic acid (PFHxA)	14	3.6	1	06/09/17 20:41	5/30/17	
Perfluoroheptanoic acid (PFHpA)	9.3	3.6	1	06/09/17 20:41	5/30/17	
Perfluorooctanoic acid (PFOA)	45	1.4	1	06/09/17 20:41	5/30/17	
Perfluorononanoic acid (PFNA)	ND U	3.6	1	06/09/17 20:41	5/30/17	
Perfluorobutanoic acid (PFBA)	9.9	7.1	1	06/09/17 20:41	5/30/17	
Perfluorobutane sulfonic acid (PFBS)	ND U	3.6	1	06/09/17 20:41	5/30/17	
Perfluorohexane sulfonic acid (PFHxS)	7.7	3.6	1	06/09/17 20:41	5/30/17	
Perfluorooctane sulfonic acid (PFOS)	23	3.6	1	06/09/17 20:41	5/30/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C5-PFPeA	106	50 - 150	06/09/17 20:41	
13C3-PFBS	87	50 - 150	06/09/17 20:41	
13C4-PFHpA	113	50 - 150	06/09/17 20:41	
13C2-PFHxA	93	10 - 151	06/09/17 20:41	
18O2-PFHxS	82	20 - 128	06/09/17 20:41	
13C4-PFOA	93	13 - 142	06/09/17 20:41	
13C5-PFNA	91	15 - 143	06/09/17 20:41	
13C4-PFOS	73	11 - 131	06/09/17 20:41	
13C4-PFBA	84	19 - 126	06/09/17 20:41	

Analytical Report

Client:

Eastern Analytical, Inc.

Project:

Service Request: K1705369

Date Collected: NA

Sample Matrix:

Water

Date Received: NA

Sample Name:

Method Blank

Units: ng/L Basis: NA

Lab Code:

KQ1706747-04

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:

PFC/537M

Prep Method:

Analyte Name	Result	MRL	Dil	Date Analyzed	Date Extracted	Q
Perfluoropentanoic acid (PFPeA)	ND U	4.0	1	06/09/17 17:54	5/30/17	
Perfluorohexanoic acid (PFHxA)	ND U	4.0	1	06/09/17 17:54	5/30/17	
Perfluoroheptanoic acid (PFHpA)	ND U	4.0	1	06/09/17 17:54	5/30/17	
Perfluorooctanoic acid (PFOA)	ND U	1.6	1	06/09/17 17:54	5/30/17	
Perfluorononanoic acid (PFNA)	ND U	4.0	1	06/09/17 17:54	5/30/17	
Perfluorobutane sulfonic acid (PFBS)	ND U	4.0	1	06/09/17 17:54	5/30/17	
Perfluorobutanoic acid (PFBA)	ND U	8.0	1	06/09/17 17:54	5/30/17	
Perfluorohexane sulfonic acid (PFHxS)	ND U	4.0	1	06/09/17 17:54	5/30/17	
Perfluorooctane sulfonic acid (PFOS)	ND U	4.0	1	06/09/17 17:54	5/30/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed Q	
13C5-PFPeA	114	50 - 150	06/09/17 17:54	
13C3-PFBS	98	50 - 150	06/09/17 17:54	
13C4-PFHpA	116	50 - 150	06/09/17 17:54	
13C2-PFHxA	99	10 - 151	06/09/17 17:54	
18O2-PFHxS	113	20 - 128	06/09/17 17:54	
13C4-PFOA	102	13 - 142	06/09/17 17:54	
13C5-PFNA	100	15 - 143	06/09/17 17:54	
13C4-PFOS	91	11 - 131	06/09/17 17:54	
13C4-PFBA	102	19 - 126	06/09/17 17:54	

Analytical Report

Client:

Eastern Analytical, Inc.

Service Request: K1705369

Date Collected: NA

Project:

Water

Date Received: NA

Sample Name:

Sample Matrix:

Units: ng/L

Lab Code:

Method Blank KQ1707239-03

Basis: NA

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:

PFC/537M

Prep Method:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Perfluoropentanoic acid (PFPeA)	ND U	5.0	1	06/19/17 19:06	6/6/17	
Perfluorohexanoic acid (PFHxA)	ND U	5.0	1	06/19/17 19:06	6/6/17	
Perfluoroheptanoic acid (PFHpA)	ND U	5.0	1	06/19/17 19:06	6/6/17	
Perfluorooctanoic acid (PFOA)	ND U	2.0	- 1	06/19/17 19:06	6/6/17	
Perfluorononanoic acid (PFNA)	ND U	5.0	1	06/19/17 19:06	6/6/17	
Perfluorobutane sulfonic acid (PFBS)	ND U	5.0	1	06/19/17 19:06	6/6/17	
Perfluorobutanoic acid (PFBA)	ND U	10	1	06/19/17 19:06	6/6/17	
Perfluorohexane sulfonic acid (PFHxS)	ND U	5.0	1	06/19/17 19:06	6/6/17	
Perfluorooctane sulfonic acid (PFOS)	ND U	5.0	1	06/19/17 19:06	6/6/17	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
13C5-PFPeA	86	50 - 150	06/19/17 19:06	
13C3-PFBS	60	50 - 150	06/19/17 19:06	
13C4-PFHpA	102	50 - 150	06/19/17 19:06	
13C2-PFHxA	86	10 - 151	06/19/17 19:06	
18O2-PFHxS	86	20 - 128	06/19/17 19:06	
13C4-PFOA	88	13 - 142	06/19/17 19:06	
13C5-PFNA	77	15 - 143	06/19/17 19:06	
13C4-PFOS	70	11 - 131	06/19/17 19:06	
13C4-PFBA	82	19 - 126	06/19/17 19:06	

QA/QC Report

Client:

Eastern Analytical, Inc.

Service Request: K1705369

Project:

Sample Matrix:

Water

SURROGATE RECOVERY SUMMARY

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:

PFC/537M

Extraction Method:

		13C2-PFHxA	13C3-PFBS	13C4-PFBA
Sample Name	Lab Code	10 - 151	50 - 150	19 - 126
Batch QC	K1705261-002	80	79	83
MW-1A	K1705369-001	97	59	89
MW-4A	K1705369-002	94	90	85
MW-6A	K1705369-003	88	63	78
MW-7B	K1705369-004	92	95	85
MW-10	K1705369-005	93	87	84
Batch QC	KQ1706747-01	96	100	98
Batch QC	KQ1706747-02	104	102	97
Lab Control Sample	KQ1706747-03	113	103	112
Method Blank	KQ1706747-04	99	98	102
Lab Control Sample	KQ1707239-01	101	63	87
Duplicate Lab Control Sample	KQ1707239-02	89	69	81
Method Blank	KQ1707239-03	86	60	82

QA/QC Report

Client:

Eastern Analytical, Inc.

Service Request: K1705369

Project:

Sample Matrix:

Water

SURROGATE RECOVERY SUMMARY

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:

PFC/537M

Extraction Method:

		13С4-РҒНрА	13C4-PFOA	13C4-PFOS
Sample Name	Lab Code	50 - 150	13 - 142	11 - 131
Batch QC	K1705261-002	99	82	70
MW-1A	K1705369-001	85	98	65
MW-4A	K1705369-002	111	90	69
MW-6A	K1705369-003	84	82	56
MW-7B	K1705369-004	110	90	66
MW-10	K1705369-005	113	93	73
Batch QC	KQ1706747-01	123	95	83
Batch QC	KQ1706747-02	124	94	91
Lab Control Sample	KQ1706747-03	126	107	102
Method Blank	KQ1706747-04	116	102	91
Lab Control Sample	KQ1707239-01	91	86	73
Duplicate Lab Control Sample	KQ1707239-02	104	83	70
Method Blank	KQ1707239-03	102	88	70

QA/QC Report

Client:

Eastern Analytical, Inc.

Service Request:

K1705369

Project:

169123

Date Collected:

N/A

Sample Matrix:

Water

Date Received: Date Analyzed: N/A 06/9/17

Date Extracted:

05/30/17

Duplicate Matrix Spike Summary

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Sample Name:

Batch QC

Units:

ng/L

Lab Code:

K1705261-002

Basis:

NA

Analysis Method:

PFC/537M

Prep Method:

EPA 3535A

Matrix Spike

Duplicate Matrix Spike

KQ1706747-01

KQ1706747-02

		KQ170	0/4/-01		NQ	1700747-02	•			
•	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Perfluoropentanoic acid (PFPeA)	ND U	117	143	82	110	143	77	50-150	6	30
Perfluorohexanoic acid (PFHxA)	2.1 J	131	143	90	129	143	89	68-141	1	30
Perfluoroheptanoic acid (PFHpA)	ND U	105	143	73	99.8	143	70	50-150	5	30
Perfluorooctanoic acid (PFOA)	$0.74~\mathrm{J}$	132	143	92	134	143	93	72-130	2	30
Perfluorononanoic acid (PFNA)	ND U	121	143	84	124	143	87	77-127	2	30
Perfluorobutanoic acid (PFBA)	1.1 J	151	143	105	152	143	106	76-136	<1	30
Perfluorobutane sulfonic acid (PFBS)	ND U	98.6	127	78	100	127	79	70-127	2	30
Perfluorohexane sulfonic acid (PFHxS)	1.2 J	114	130	86	111	130	84	71-130	2	30
Perfluorooctane sulfonic acid (PFOS)	5.5 J	121	133	87	110	133	79	74-135	9	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

Eastern Analytical, Inc.

Service Request:

K1705369

Project:

169123

Date Analyzed:

06/09/17

Sample Matrix:

Water

Date Extracted:

05/30/17

Lab Control Sample Summary

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:

PFC/537M

Units:

ng/L

Prep Method:

EPA 3535A

Basis:

NA

Analysis Lot:

549216

Lab Control Sample KQ1706747-03

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
Perfluorobutane sulfonic acid (PFBS)	111	142	78	50-150
Perfluorobutanoic acid (PFBA)	. 161	160	101	76-136
Perfluoroheptanoic acid (PFHpA)	120	160	75	50-150
Perfluorohexane sulfonic acid (PFHxS)	112	146	77	71-130
Perfluorohexanoic acid (PFHxA)	145	160	90	68-141
Perfluorononanoic acid (PFNA)	129	. 160	81	77-127
Perfluorooctane sulfonic acid (PFOS)	119	149	80	74-135
Perfluorooctanoic acid (PFOA)	148	160	92	72-130
Perfluoropentanoic acid (PFPeA)	136	160	85	50-150

QA/QC Report

Client:

Eastern Analytical, Inc.

Project:

169123 Water **Service Request:**

K1705369

Date Analyzed: Date Extracted: 06/19/17 06/06/17

Duplicate Lab Control Sample Summary

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Analysis Method:

Sample Matrix:

PFC/537M

Prep Method:

EPA 3535A

Units:

ng/L

Basis:

ng/L NA

Analysis Lot:

550284

Lab Control Sample KQ1707239-01 Duplicate Lab Control Sample KQ1707239-02

Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Perfluorobutane sulfonic acid (PFBS)	161	177	91	171	177	96	50-150	6	30
Perfluorobutanoic acid (PFBA)	195	200	97	210	200	105	76-136	8	30
Perfluoroheptanoic acid (PFHpA)	170	200	85	161	200	80	50-150	6	30
Perfluorohexane sulfonic acid (PFHxS)	155	183	85	191	183	105	71-130	21	30
Perfluorohexanoic acid (PFHxA)	155	200	78	165	200	83	68-141	6	30
Perfluorononanoic acid (PFNA)	176	200	88	191	200	96	77-127	8	30
Perfluorooctane sulfonic acid (PFOS)	141	186	76	167	186	90	74-135	17	30
Perfluorooctanoic acid (PFOA)	165	200	83	182	200	91	72-130	10	30
Perfluoropentanoic acid (PFPeA)	160	200	80	147	200	73	50-150	9	30

QA/QC Report

Client:

Eastern Analytical, Inc.

Service Request: K1705369

Project:

Date Analyzed: 06/09/17 17:54

Sample Matrix:

Water

Date Extracted: 05/30/17

Method Blank Summary

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Sample Name:

Method Blank

Instrument ID:K-LCMS-06

Lab Code:

KQ1706747-04

 $\textbf{File ID:} J: \\ LCMS06 \\ Data \\ 060917_2_b1 \\ 060917_320.D \\ \\ \\$

Analysis Method

Analysis Method: PFC/537M

Analysis Lot:549216

Prep Method: EPA 3535A

Extraction Lot:289099

This Method Blank applies to the following analyses.

Sample Name	Lab Code	File ID	Date Analyzed
Lab Control Sample	KQ1706747-03	J:\LCMS06\Data\060917_2_b1\060917_321.D\	06/09/17 18:04
Batch QC	K1705261-002	J:\LCMS06\Data\060917_2_b1\060917_323.D\	06/09/17 18:25
Batch QC	KQ1706747-01	J:\LCMS06\Data\060917_2_b1\060917_324.D\	06/09/17 18:36
Batch QC	KQ1706747-02	J:\LCMS06\Data\060917_2_b1\060917_325.D\	06/09/17 18:46
MW-4A	K1705369-002	J:\LCMS06\Data\060917_2_b1\060917_334.D\	06/09/17 20:20
MW-7B	K1705369-004	J:\LCMS06\Data\060917_2_b1\060917_335.D\	06/09/17 20:31
MW-10	K1705369-005	J:\LCMS06\Data\060917_2_b1\060917_336.D\	06/09/17 20:41

QA/QC Report

Client:

Eastern Analytical, Inc.

Service Request: K1705369

Project:

Water

Date Analyzed: 06/19/17 19:06 **Date Extracted:** 06/06/17

Method Blank Summary

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Sample Name:

Sample Matrix:

Method Blank

Instrument ID:K-LCMS-06

Lab Code:

KQ1707239-03

File ID:J:\LCMS06\Data\061917_b1\061917_108

Analysis Metho

Analysis Method: PFC/537M

Analysis Lot:550284

Prep Method: EPA 3535A

Extraction Lot:289719

This Method Blank applies to the following analyses.

Sample Name	Lab Code	File ID	Date Analyzed
Duplicate Lab Control Sample	KQ1707239-02	J:\LCMS06\Data\061917_b1\061917_110	06/19/17 19:06
MW-1A	K1705369-001	J:\LCMS06\Data\061917_b1\061917_111	06/19/17 19:06
Lab Control Sample	KQ1707239-01	J:\LCMS06\Data\061917_b1\061917_109	06/19/17 19:06
MW-6A	K1705369-003	J:\LCMS06\Data\061917_b1\061917_112	06/19/17 20:06

QA/QC Report

Client:

Eastern Analytical, Inc.

Service Request: K1705369

Project:

Date Analyzed: 06/09/17 18:04

Sample Matrix:

Water

Date Extracted: 05/30/17

Lab Control Sample Summary

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Sample Name:

Lab Control Sample

Instrument ID:K-LCMS-06

Lab Code:

KQ1706747-03

File ID:J:\LCMS06\Data\060917_2_b1\060917_321.D\

Analysis Method: PFC/537M

Analysis Lot:549216

Prep Method:

EPA 3535A

Extraction Lot:289099

This Lab Control Sample applies to the following analyses.

Sample Name	Lab Code	File ID	Date Analyzed
Method Blank	KQ1706747-04	J:\LCMS06\Data\060917_2_b1\060917_320.D\	06/09/17 17:54
Batch QC	K1705261-002	J:\LCMS06\Data\060917_2_b1\060917_323.D\	06/09/17 18:25
Batch QC	KQ1706747-01	J:\LCMS06\Data\060917_2_b1\060917_324.D\	06/09/17 18:36
Batch QC	KQ1706747-02	J:\LCMS06\Data\060917_2_b1\060917_325.D\	06/09/17 18:46
MW-4A	K1705369-002	J:\LCMS06\Data\060917_2_b1\060917_334.D\	06/09/17 20:20
MW-7B	K1705369-004	J:\LCMS06\Data\060917 2 b1\060917 335.D\	06/09/17 20:31
MW-10	K1705369-005	J:\LCMS06\Data\060917 2 b1\060917 336.D\	06/09/17 20:41

QA/QC Report

Client:

Eastern Analytical, Inc.

Service Request: K1705369

Project:

Date Analyzed: 06/19/17 19:06 **Date Extracted:** 06/06/17

Sample Matrix:

Water

Lab Control Sample Summary

Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS

Sample Name:

Lab Control Sample

Instrument ID:K-LCMS-06

Lab Code:

KQ1707239-01

File ID:J:\LCMS06\Data\061917_b1\061917_109

Analysis Method: PFC/537M

Analysis Lot:550284

Prep Method:

EPA 3535A

Extraction Lot:289719

This Lab Control Sample applies to the following analyses.

Sample Name	Lab Code	File ID	Date Analyzed
Duplicate Lab Control Sample	KQ1707239-02	J:\LCMS06\Data\061917_b1\061917_110	06/19/17 19:06
Method Blank	KQ1707239-03	J:\LCMS06\Data\061917_b1\061917_108	06/19/17 19:06
MW-1A	K1705369-001	J:\LCMS06\Data\061917_b1\061917_111	06/19/17 19:06
MW-6A	K1705369-003	J:\LCMS06\Data\061917_b1\061917_112	06/19/17 20:06

CHAIN-OF-CUSTODY RECORD

eastern analytical

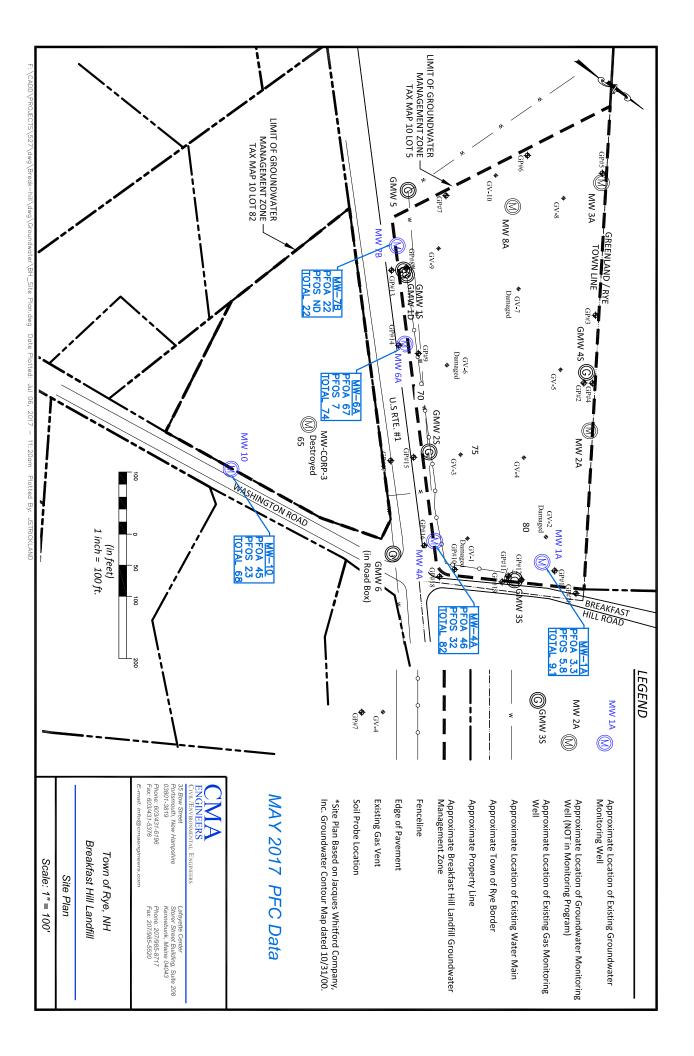
professional laboratory services

34

aSampleID	Date/Time	aMatrix	Parameters		Sample Notes	Notes # of containers	ners
MW-1 A	85:41 +102/24/50		Field Specific Conductance, Field pH, Chloride, Nitrate, TKN, Dissolved Iron, Manganese, SWL, PFC's 537	lived Iron, Manganese, SWL, Pi			\vi
reservative: HCL HNO	reservative: HCL HNO $_3$ H $_2$ SO $_4$ NaOH MEOH Na $_2$ S $_2$ O $_3$	Na ₂ S ₂ O ₃ ICE					Manager 27 species
MW-4 A	MW-4 A o≤)zҸ zѻเ∓ GW h₂so₁ NaOH MEOH Na₂S₂O₃	ICE	Field Specific Conductance, Field pH, Chloride, Nitrate, TKN, Dissolved Iron, Manganese, SWL, PFC's 537	Ned Iron, Manganese, SWL, Pi	FC's		g
MW-6 A	MW-6 A $OS/24/2017$ GW 14:26 $OS/29/29$ Naoh Meoh Na $_2S_2O_3$	CE	Field Specific Conductance, Field pH, Chloride, Nitrate, TKN, Dissolved Iron, Manganese, SWL, PFC's 537	⊪lved Iron, Manganese, SWL, Pi	FC's		9
MW-7 B	MW-7B 05/24/2017 GW		Field Specific Conductance, Field pH, Chloride, Nitrate, ТКN, Dissolved Iron, Manganese, SWL, PFC's 537	ilved Iron, Manganese, SWL, Pi	FC's		5
MW-10 reservative: HCL HNO,	MW-10 $\left \begin{array}{c c} oS Z4 Z0^{3} & & GW \\ i3:S2 & & i3:S2 \end{array}\right $ reservative: HCL HNO ₃ H ₂ SO ₄ NaOH MEOH Na ₂ S ₂ O ₃		Field Specific Conductance, Field pH, Chloride, Nitrate, TKN, Dissolved Iron, Manganese, SWL, PFC's 537	lved Iron, Manganese, SWL, Pi	FC's		7
MW-2 A	MW-2 A GW reservative: HCL HNO ₃ H ₂ SO ₄ NaOH MEOH Na ₂ S ₂ O ₃	ICE	prc's 637 Could not lec	1 ccate			B
aClientID Ry	Rye - Breakfast Hill LF		Results Needed by: Preferred date	eporting	☐ EDD Disk	PO#	-
ט יי ד	104 nYearMonth 2017.05 Paul Schmidt CMA Engineers, Inc. (Manchester) Langler Place, 55 South Commercial	nYearMonth 2017.05 rs, lnc. (Manchester) , 55 South Commercia		MHC □ NO FAX □ EDD Disk □ Fax □ No partial FAX 図 EDD emai Ice: Y図 N□ Samples Collected by: ∑しどか)	YØ NO SL(EA)	#ature3	oc l
City Ma Phone 60:	Manchester NH 603-627-0708	03101	PFC's by EPA 537 (9 compound list)	Relinquished by	Date/Time	Received by	man
Fax				Relinquished by	Date/Time	Received by	

CHAIN-OF-CUSTODY RECORD

eastern analytical


professional laboratory services

35

169123

	Could not locate	Na ₂ S ₂ O ₃ ICE	preservative: HCL HNO ₃ H ₂ SO ₄ NaOH MEOH Na ₂ S ₂ O ₃ ICE	preservative: HCL HNC
8		GW PFC's 537	1	MW-4S
	could not locate	Na ₂ S ₂ O ₃ ICE	preservative: HCL HNO ₃ H ₂ SO ₄ NaOH MEOH Na ₂ S ₂ O ₃ ICE	preservative: HCL HNC
0		GW PFC's 537	Table 1	MW-3 A
Sample Notes # of containers		aMatrix Parameters	Date/Time	aSampleID

Fax	Phone	City	Address	Customer	Client (Pro Mgr) Paul Schmidt	nProjectID 104	aClientID
	603-627-0708	City Manchester NH 03101	Langler Place, 55 South Commercial	Customer CMA Engineers, Inc. (Manchester)	Paul Schmidt	104 nYearMonth 2017.05	Rye - Breakfast Hill LF
	:	PFC's by EPA 537 (9 compound list)	Invoice town directly	•	Acid.	Notes about project	Results Needed by: Preferred date
Relinquished by		Relinquished by		Samples Collected by: TL (EA)	lce:	☐ Fax ☐ No partial FAX 🛮 EDD emai	ReportingOptions
Date/Time		Date/Time	05/24/2017 1615	T (EAI)	lce: YXO N□	⊠ EDD emai	☐ EDD Disk
Received by		Received by	iois Mulling		Temperature 2/ OC	Quote#	PO#

