Site: Coakley Landsill Break: _____ 17.8 Other: 57046 570461 SDMS DocID

47-85

June, 1985

÷

RECEIVED

JUN 1 2 1385

SOLID WASTE MGT.

HYDROGEOLOGICAL REPORT ON THE TOWN OF RYE SANITARY LANDFILL

TABLE OF CONTENTS

LETTER OF TRANSMITTAL			
INTRODUCTION		•••••	1
BEDROCK SURFICIAL GEOLOGY AND TEXTURAL		•••••	2
SEISMIC REFRACTION SURVEY	• • • • • • • • • • • • • • • • • • • •	•••••	3
SOIL BORING SURVEY AND MONITORING WELL	INSTALLATION	• • • • • • • • • • • • • • • • •	4
WATER QUALITY Sampling Procedure Sampling Results	• • • • • • • • • • • • • • • • • •		5
CONCLUSIONS			6

APPENDICES

- APPENDIX A JOHN W. DURGIN'S TOPOGRAPHIC MAP
- APPENDIX B DUBOIS & KING, INC.'S 1984 TOPOGRAPHIC MAP OF SITE
- APPENDIX C SEISMIC REFRACTION SURVEY DATA
- APPENDIX D RYE, NEW HAMPSHIRE LANDFILL SEISMIC STUDY
- APPENDIX E SOIL BORING LOGS

- APPENDIX F BORING LOCATIONS, BEDROCK AND WATER TABLE CONTOURS
- APPENDIX G TYPICAL MONITORING WELL DESIGN
- APPENDIX H WATER QUALITY RESULTS SUMMARY
- APPENDIX I APPROXIMATE 1,000 FOOT RADIUS AROUND LANDFILL SITE

Page

INTRODUCTION

The Town of Rye, New Hampshire initiated operation of a municipal landfill at the intersection of Lafayette Road and Breakfast Hill Road in 1976. For a short period of time, the landfill was operated without benefit of any linear and other presently accepted operational procedures. However, the operation was changed to lined trenchs which now cover the major portion of the site.

Operation as an active landfill was completed by July 1, 1985. During that time, both municipal trash and incinerator ash from Pease Air Force Base was deposited at the site. All the ash was deposited in areas where a natural silt liner has been placed prior to placing trash. The base of the landfill was lined with finer grained sediments to try to limit leachate to the site. A sample of the liner materials was provided to our Staff Hydrogeologist for analysis. The material is a fine sand with approximately thirty percent silt content.

Appendix H is a map prepared by John W. Durgin, P.E. depicting the original topography, proposed final topography and a proposed fence to cut down view of the operation from Lafayette Road (U.S. Rte. 1). By the time operations ceased most of the eastern portion of the property had been filled to capacity. However, the natural material in the west-southwest portion of the property had been used as a cover material and, therefore, constitutes a large area which should be filled as part of the site closure. Appendix B is a topographic map of the site prepared by DuBois & King, Inc. depicting the site topography as found during the summer of 1984. For comparison to the Durgin plan, DuBois & King, Inc.'s contours are labelled approximately 12 feet higher than those for Durgin (i.e., Durgin elevation 72 equals approximately DuBois & King, Inc.'s elevation 84).

The Town of Rye has used this site as a landfill as part of a lease agreement. In 1986, the lease will expire. At that time, the landfill will need to be closed in accordance with current state regulation. Accordingly, the Town of Rye contracted with DuBois & King, Inc. to perform an initial hydrogeologic study including groundwater monitoring. This report is the result of that study. Additionally, the Town has contracted with DuBois & King, Inc. to perform a second round of groundwater quality sampling, contingent of State concurrence, and prepare a final closure plan in accordance with State of New Hampshire requirements.

-1-

BEDROCK, SURFICIAL GEOLOGY, AND TEXTURAL VARIATION

A number of bedrock outcrops can be observed just to the west of the site. They show the underlying bedrock to be a fine-grained biotite gneiss which exhibits well-developed northeast-southwest foliation. The State geologic map identifies this unit as Zone G of the Rye Formation. The bedrock is fractured and intruded by many pegmatite and basalt dikes.

The surficial geology is composed of stratified sands and gravels. Bedding is very well developed, and the sediments are well sorted. These are typical glacial outwash materials.

The alternate layers of sands and gravels are the most obvious small-scale textural variation. This has the effect of creating a difference between horizontal and vertical permeabilities. There is also a large-scale textural variation with coarser materials at the north end of the pit and finer materials at the south end. This is accompanied by a greater degree of sorting in the south end. Large boulders are found all over the site but are especially evident in the northwest corner of the pit.

SEISMIC REFRACTION SURVEY

The first phase of the geophysical and geohydrologic study at the Rye, New Hampshire landfill was a seismic refraction survey of the site. The objective of the survey was to identify the depths to bedrock and other intervening layers so that the topography of the bedrock surface could be determined. This information was then used to site groundwater monitoring wells. Tests were performed utilizing a Bison Model 1570-B seismic timer. Vibration energy sources for the testing were generated by hammer impacts.

A total of eleven tests were conducted. The raw data from the tests is presented in Appendix c as travel times, time-travel plots, and bedrock depth calculations. In most cases, the time-distance profiles were straightforward and yielded good results. Test reversals were run to insure that the velocities obtained were correct and to determine the inclination of the bedrock surface.

In several test locations, problems were encountered due to background seismic noise. Testing on the eastern perimeter of the landfill was affected by vibration resulting from traffic on Route 1. This limitation was overcome by conducting tests in an open field on the east side of Route 1, across from the landfill.

Depths to bedrock were calculated for each seismic profile (see Appendix A). A transit survey was run along each seismic test line to establish bedrock elevations relative to a common benchmark. The resultant bedrock surface elevations are presented on in Appendix D - Rye, New Hampshire Landfill Seismic Study.

The overall bedrock topography is uneven and slopes to the east. A slight concavity is also evident as shown on the map. This is confirmed by bedrock outcroppings to the east and northeast of the site, and by test pit excavations performed in the landfill. It appears that the landfill is located in the upper reaches of a bedrock basin, quite close to a groundwater divide.

The seismic data shows no evidence of impeding soil strata such as glacial till overlying the bedrock. Additionally, the seismic velocities in the bedrock itself are relatively low which suggests that the rock is fractured. Judging from the soil material exposed around the landfill, the bedrock is probably overlain with coarse-grained, highly permeable materials throughout. The limited recharge area and fractured bedrock would explain the lack of groundwater on the bedrock surface over much of the landfill site.

-3-

SOIL BORING SURVEY AND MONITORING WELL INSTALLATION

A soil boring survey was performed at the Rye, New Hampshire landfill site to accurately access the hydrogeologic conditions at the site and to provide bore holes for groundwater monitoring wells. Soil boring and bedrock coring was performed by personnel from Soils Engineering, Inc. of Charlestown, New Hampshire.

The results of the seismic testing were used as a basis for locating borings/monitoring wells and were approved by the State of New Hampshire during an August 23, 1984 meeting. In general, monitoring wells are located in landfill sites such that one well is located up-gradient of the disposal area and three down-gradient. The seismic study showed that the underlying bedrock sloped in an easterly direction and since groundwater generally flows along the bedrock slope, the borings were located accordingly. Seven holes were bored to refusal and then cored an additional five to ten feet to verify bedrock. The boring logs are presented in Appendix E. The locations of the soil borings are shown on Map I.

Split-spoon samples were taken at five foot intervals in each of the bore holes. Evaluation of the samples showed that in six of the seven borings, the sediments were composed of sands and gravels of relatively high permeability. In boring 8A, located in the southern portion of the landfill, the sands and gravels were underlain by a thin layer of silty clay.

Bedrock contours generated from the boring logs are shown in Appendix F. Depth to bedrock measurements indicated a shallower bedrock profile than had been calculated from the results of seismic testing. This is due to velocity inversions which are not uncommon in stratified glacial sediments.

Water table elevations were measured in each of the bore holes on November 6, 1984 using an electric well probe. Bore holes 3A, 2A, 8A and 7A were dry. Up-gradient well #1, contained water as well as the down-gradient wells 4A and 6A. Water table measurements were used to develop the groundwater contours shown in Appendix F. The contours show the groundwater table sloping in a south-southwesterly direction.

Monitoring wells were installed in the bore holes to allow subsequent water quality sampling and water table elevation determinations. The wells consist of 1 1/2-inch PVC, slotted the full depth of the water table. The bore hold anulli were backfilled with silica sand sealed with bentonite. Locking steel caps were cemented in place for security purposes. A diagram showing a typical monitoring well installation is presented in Appendix G.

WATER QUALITY

A groundwater sampling program has been initiated at the Rye, New Hampshire landfill. Water samples were obtained on November 6, 1984 from the monitoring wells located at the landfill site and analyzed for volatile organic compounds using a gas chromatograph (GC) screen, pH, specific conductivity, COD, chlorides, nitrate-nitrogen, iron and manganese. Three off-site water samples from downgradient private wells have been analyzed.

Sampling Procedure

Ż

Y

Í

Ú

These monitoring wells containing groundwater were purged of approximately ten well volumes prior to sample collection. Samples were obtained from the monitoring wells using an air squeeze pump, peristaltic pump, or FVC baler, as appropriate. All equipment was flushed with deionized water before and after each sample was collected.

At the time of sampling wells 1, 4A, 6A and 8A contained water. However, well 8A contained only three inches of water and a sample could not be sampled.

Sampling Results

The results of the water quality testing are presented in Appendix H, including sample results from the three nearby private wells. It is evident that the landfill has had a measurable impact on groundwater quality. High conductivity readings and the presence of elevated levels of iron and manganese (common leachate constituents) in wells 1, 4A and 6A show that contamination is occurring in the immediate vicinity of the site.

Volatile organic compounds were also detected in the on-site monitoring wells. These compounds are typically found in petroleum products and cleaning solvents and are relatively common at low levels in landfill leachate.

Of concern is the possibility that the leachate plume may be migrating off-site. Because of the high permeability of the on-site soils and the fractured state of the underlying bedrock, the contamination may not be restricted to the surficial deposits but migrated into the bedrock. This condition can provide a means for rapid migration of contaminated groundwater.

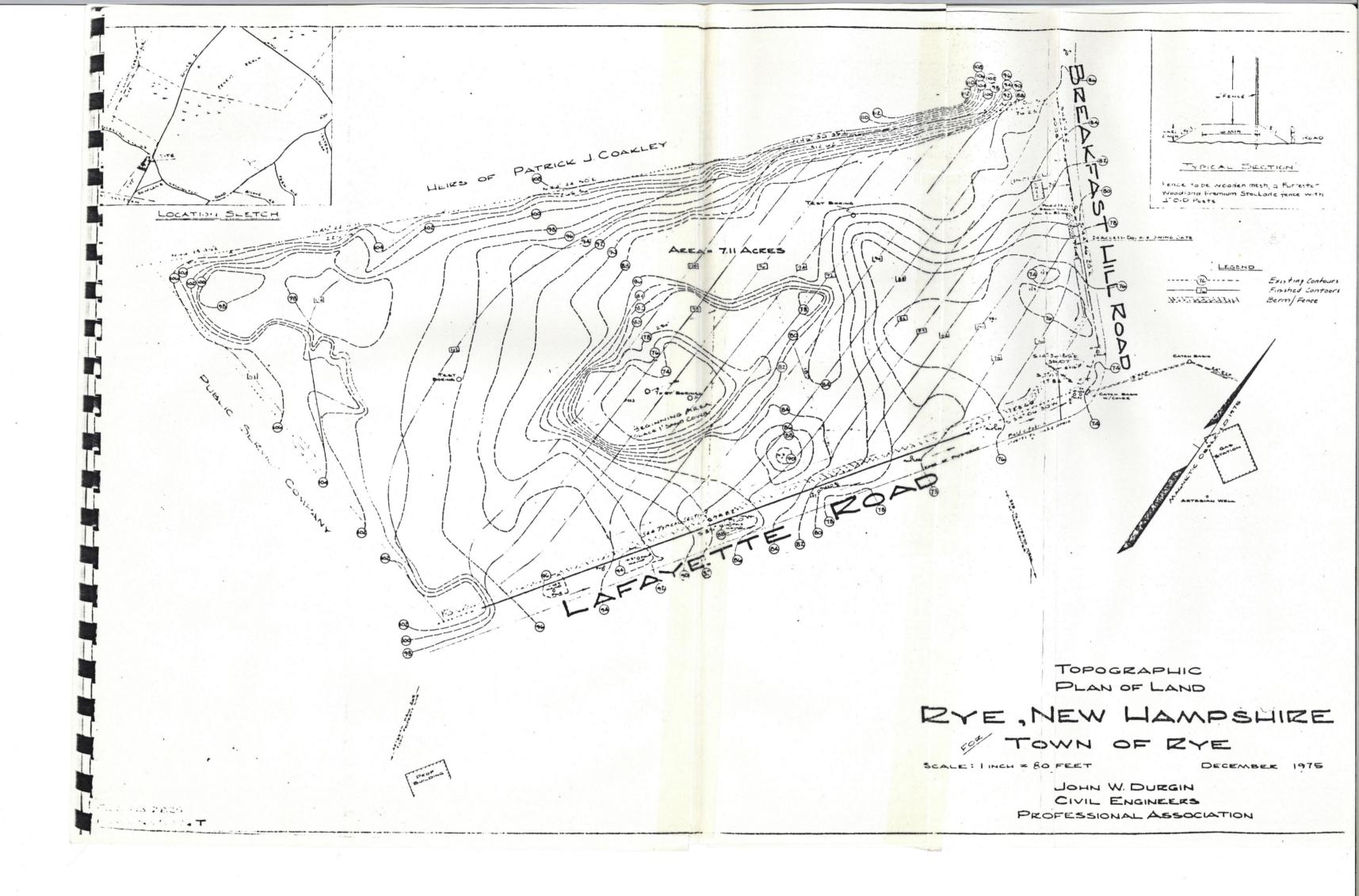
It is difficult to ascertain the full extent of leachate migration using the existing configuration of monitoring wells. The width of the plume at the eastern border of the landfill suggests that leachate has migrated under Route 1 and could possibly have advanced further. At this time, delineation of the plume boundaries can only be speculative. However, the off-site samples show no significant contamination has affected nearby drinking water sources.

-5-

CONCLUSIONS

The Rye Landfill at the junction of Breakfast Hill Road and U. S. Route 1 is producing a leachate which is presently degrading groundwater quality in the area of the landfill. The contamination is typical of landfill leachates with high iron, manganese, COD, specific conductance, and low levels of volatile organics. To date, this contamination has not been shown to affect private water supplies in the immediate vicinity.

Water table gradients show that groundwater is flowing from the northwest to the southeast, diminishing the possibility that leachate from the Coakley site is responsible for contamination of groundwater at the Town of Rye site. The only way that the Coakley site might influence groundwaters in the Town of Rye Landfill is by flow through fractures in the bedrock. This is a slight possibility, with little possibility of confirmation.

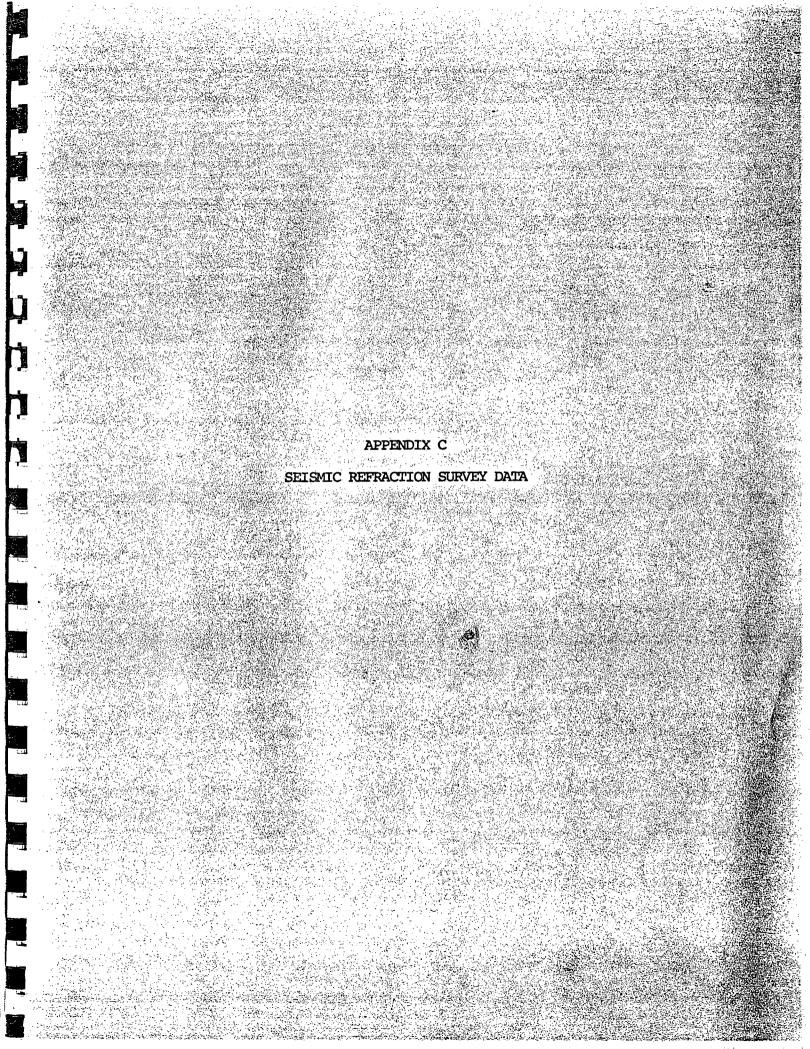

Proper closure of the site with an impermeable cap should virtually eliminate leachate and resultant groundwater contamination. This conclusion is based on the facts that 1) a bedrock divide is believed to be just to the westnorthwest of the site, 2) the overburden is coarse and ledge is fractured resulting in rainfall on up-gradient areas entering bedrock quickly, and 3) upgradient monitoring wells contain no water making trash deposited in the groundwater unlikely.

DuBois & King, Inc. recommends that closure of the site, including an impermeable cap be completed as soon as feasible. In the meantime, the Town of Rye should use its personnel to rough grade the site thereby reducing overall closure costs.

-6-

APPENDIX A

JOHN W. DURGIN'S TOPOGRAPHIC MAP


APPENDIX B DUBOIS & KING, INC.'S 1984 TOPOGRAPHIC MAP OF SITE

SDMS TEMPORARY PLACEHOLDER US EPA New England Superfund Document Management System

THIS PAGE SERVES AS A TEMPORARY IMAGE IN THIS DOCUMENT.

THE PERMANENT PAGE WILL BE INSERTED BY THE PDF TEAM.

For Further Information Regarding this Document, Please Contact the EPA New England Office of Site Remediation and Restoration Records and Information Center (OSRR RIC) 617-918-1440

Distance (Ft.) (Shock to Geophone)	Time (MS)
10	12.1
20	29.1
30	60.6
40	53.4
50	61.5
60	71.4
70	68.2
80	88.6
90	77.0
100	91.0
Reversal	
10 · · · · · · · · · · · · · · · · · · ·	12.1
20	21.0
30	30.1
40	38.8
50	52.6
60	61.8
70	69.8
80	76.0
90	91.0
100	92.2
110	95.0
120	96.0
130 140	99.0
	95.0
150	100.0

Distance (Ft.)	Time (MS)
10	8.4
20	16.4
30	25.9
40	28.5
50	39.5
60	45.5
70	48.0
80	55.4
90	62.2
100	69.8
110	76.6
120	80.2
130	85.4
140	89.4
150	89.8

Reversal

10	7.3
20	16.1
30	35.1
60	41.0
70	47.4
80	49.8
90	52.6

Distance (Ft.)		Time (MS
10 20 30 40 50 60 70 80 90 100 110 120 150 190		6.5 11.3 14.8 20.7 24.1 32.3 45.0 51.8 41.8 34.2 41.8 41.8 41.8 41.8 41.8
	Reversal	
25 50 75 100 125 150 175	-	21.2 43.1 64.1 60.6 53.0 61.6 64.2

Τ.

lstance (Ft.)	Time (MS)
20	17.1
30	28.1
40	34.7
50	44.8
60	37.4
70	35.4
8 0	41.0
90	42.2
100	44.2
110	50.6
120	44.2
130	46.2
140	50.6
150	55.0
Reversal	

50 60

90

110 120

150

4.7	
16.0	
25.0	
33.9	
43.3	
51.4	
50.6	
34.2	
41.0	
40.2	
51.0	
37.4	
43.4	
57.4	

ENGINEERING • PLANNING • DEVELOPMENT • MANAGEMENT

Silukiry.

I

Distance	(Ft.)	Time (MS)
10	•	9.2
20		15.3
.30		19.5
40		22.3
50		22.1
60		24.1
70		26.3
80	•	24.7
90		26.1
	Reversal	
10		7.9
20		-
30		17.5
.40		27.3
50		27.9
60		29.1
70		27.7

1

in her

Distance (Ft.)				Time (MS)
5				4.3
10		1. ¹		8.6
20		· · ·		7.6
30	· · · ·			9.9
40 50	·			10.3
60				10.1
70	· .			12.7 13.1
90	· .			15.1
100				15.7
	·			1.5.7
	Reve	rsal		54
5				4.2
10				8.5
25				10.3
40				13.5
50	•			15.0
60				15.8
70				13.8
80 90				14.9
100				19.1
100	<i>v</i> .		· · · ·	18.5
	· · ·			
	· .			
· · · · · · · · · · · · · · · · · · ·				
				т.
	٤ ;		X	۰.
	٤ ;			
· , ·				
- - -				
•	1. A.			
1				

DuBois EKing

Distance (Ft.)	Time (MS)
5	3.5
10	5.5
20	7.7
30	10.2
40	11.3
50	11.0
65	13.0
75	13.8
85	14.3
100	· · · · · · · · · · · · · · · · · · ·

P

No Reversal

DuBois EKing

*

IJ

IJ

]

n

Ŋ

Ą

Ŋ

Distance (Ft.)	Time (MS)
5	4.1
10	7.3
20	7.3
30	7.5
40	8.2
50	9.7
60	9.7
70	10.3
80	
90	10.5 11.3
100	11.3
<u>Reversal</u>	
5	4.0
10	8.8
20	9.3
30	10.1
40	7.5
50	11.5
60	10.5
70	9.1
80	10.1
90	11.1
100	12.1

F

I,

Ľ

ан 2 т

Distance (Ft.)	Time (MS)
10	4.3
25	19.8
40	29.1
55	37.4
70	47.4
85	37.8
100	39.8
125	45.8
150	45.4

No Reversal

DuBois EKing ...

H

JULK

illuasia 🖌

÷

8 (B

Distance (Ft.)	Time (MS)
25	20.2
50	32.7
60	31.3
75	43.4, 28.6, 25.8
90	48.9, 44.6, 28.6
100	47.8, 41, 37.4

No Reversal

Distance (<u>Ft.)</u>	Time (MS)
10		7.8
20		18.1
30		20.3
40		26.5
50		35.0
60		39.8
70		43.4

No Reversal

ANALYSIS - Profile #1 - POOR DATA TOO MUCH NOISE VIA = 830 $V_{1} = V_{14} + V_{1B} = 890$ Vib = 950 Vz4 = 7000 $D = \frac{X_c}{2} \sqrt{\frac{V_z - V_1}{V_z - V_1}}$ = 37.5 V2B - 7000 X . 4 - 53.0 XIB= 86.5 56.2 Ti4 -79.2 Tip ANALYSIS - Profile #2 NOT Possible - POOR DATA TOO MUCH NOISE NALYSIS Profile # 6 NOT POSSIble - POOR DATIA TOO MUCH NOISE

IJ

11

1

A1141 4515 - Profile # 3 VIA = 1825 VIB = 1150 $V_{zA} = 14,000$ $U_{2B} = 1150$ Xch = 70.0 $X_{CB} = 65.0$ TiA = 33.0 $T_{iB} = 52.8$ $V_{1} = V_{1\mu} + V_{1B} = 1487.5$ ft/sec $\Theta = 0.5 \left[\sin^{-1} \frac{V_i}{V_{zB}} - \sin^{-1} \frac{V_i}{V_{zB}} \right] =$ $V_2 = 2 \cos \left[\frac{V_{2A} V_{2B}}{V_{2A} + V_{2B}} \right] = 14,482 \text{ ft/sec}$ $D_{A} = \frac{X_{CA}}{2} \sqrt{\frac{U_{2} - V_{1}}{V_{2} + V_{1}}} + \frac{X_{CA}}{2} \sin \Theta = \frac{31.57}{1} f + \frac{1}{2}$ $D_{3} = \frac{X_{CE}}{2} \sqrt{\frac{V_{2} - V_{1}}{V_{2} + V_{1}}} + \frac{X_{CA}}{2} \sin \Theta = \frac{29.32}{12} \frac{1}{14}$

ANALYSIS - Profile # 4 $V_{1,4} = 1120$ VIB = 1200 $V_{24} = 10,000$ $V_{2B} = |8,000|$ XCA = 42.0 XLB = 52.0 $T_{i\mu} = 33.2$ TiB = 40.8 $V_{i} = \frac{V_{iA} + V_{iB}}{2} = 1160 \text{ ft/sec}$ $\theta = 0.5 \left(\frac{S_{1n}}{V_{2B}} - \frac{S_{1n}}{V_{2A}} \right) = -1.5^{\circ}$ $V_2 = 2\cos \frac{1}{2} \left[\frac{V_{2B}}{V_{2A} + V_{2B}} \right] = 12,857$ ft/sec $D_{A} = \frac{X_{CA}}{Z} \sqrt{\frac{V_{z} - V_{i}}{V_{z} + V_{i}}} + \frac{X_{CA}}{Z} \sin \varphi = \boxed{19.2 \text{ feet}}$ $D_{B} = \frac{X_{CB}}{2} \sqrt{\frac{V_{2} - V_{1}}{1 + \frac{1}{2}}} + \frac{X_{CB}}{2} \sin \Theta = \frac{23.75}{23.75} \text{ Get}$

ANALYSIS Prof. 6 = 5 VIA = 1300 VIB = 1230 $V_{2M} = 8,000$ V2B = 30,000 $X_{CA} = 26.5$ XCB = 39.5 $T_{iA} = 17.0$ TiB = 26.4 $V_1 = V_{1A} + V_{1B} = 1265$ ft/sec $\Theta = 0.5 \left[\sin^{-1} \frac{V_{1}}{V_{2B}} - \sin^{-1} \frac{V_{1}}{V_{2A}} \right] = -3.34^{\circ}$ $V_2 = 2\cos \Theta \left[\frac{V_{ZA} V_{ZB}}{V_{ZA} + V_{ZB}} \right] = 12,568 \text{ GHARC}$ $P_{H} = \frac{\chi_{CA}}{2} \sqrt{\frac{V_2 - V_1}{V_2 + V_1}} + \frac{\chi_{CA}}{2} \sin \theta = \frac{11.2 \text{ ft}}{2}$ $P_{B} = \frac{X_{CB}}{2} \sqrt{\frac{V_{2} - V_{1}}{V_{1} + V_{1}}} + \frac{X_{CB}}{2} \sin \Theta = \frac{16.6}{16.6} \frac{14}{14}$

ANALYSIC Profile # 7 VIA = 1150 $V_{1B} = 1200$ $V_{2A} = 12,000$ $V_{2B} = 11,500$ $X_{CA} = 10.0$ XcB = 11.0 $T_{i,A} = 7.1$ $T_{iB} = 8.0$ V1 = V1A+U2B = 1175 fed/sec $\frac{9}{V_{2B}} = 0.5 \left[\frac{V_1}{V_{2B}} - \frac{V_1}{V_{2A}} \right] = 0.12$ $V_2 = 2\cos \Theta \left[\frac{V_{2,e} V_{2,B}}{V_{2,A} + V_2 B} \right] = 11,745 f!/ec$ $\frac{\chi_{cn}}{2}\sqrt{\frac{V_2-V_1}{V_2+V_1}} + \frac{\chi_{cn}}{2}\sin\Theta = \left[\frac{4.51}{2}\right]$ $D_{B} = \frac{X_{CB}}{2} \sqrt{\frac{V_{2} - V_{1}}{11 + 11}} + \frac{X_{CB}}{2} \sin \Theta =$ 4.50

ANALYSIS - Profile # 8 VI = 1750 (NO REJERSIAL) $V_{z} = 11,800$ Xc = 13.0 $D = \frac{X_c}{Z} \sqrt{\frac{V_c - V_1}{V_z + V_1}}$ Ti= 6.3 Depth = 5.6 ft ANALUSIS - Profile # 10 (NO REVERSAL) $V_{1} = 1450$ $U_2 = 11,800$ $D = \frac{X_c}{2} \sqrt{\frac{V_2 - V_1}{V_2 + V_1}} =$ 24.3 fect Xc = 55 $T_{i} = 33.0$

DuBois EKing

ANALYSIS - Profile # 9 $V_{1}A = 1350$ VIB = 1140 $V_{2A} = 20,000$ $V_{2B} = 23,000$ $X_{CA} = [0,0]$ $X_{c_B} = 10.0$ $T_{iA} = 6.6$ Tib = 8.0 V, = VIA + VIB = 1245 F1/Aec $\theta = 0.5 [sin^{-1} \frac{V_{1}}{V_{2R}} - sin^{-1} \frac{V_{2R}}{V_{2R}}] = V_2 = 2 \cos \frac{1}{2} \int \frac{V_{2A} V_{2B}}{V_{2A} + V_{2B}} = \frac{21,395}{1,395} \frac{41}{2}$ $\frac{V_2 - V_1}{V_2 + V_1} + \frac{X_{c*}}{2} \sin \theta$ D_A = XCA = 4.67 Les $\sqrt{\frac{V_z - V_i}{V_z + V_i}} + \frac{\chi_{CB}}{2} \sin \Theta$ $D_B =$ XCB

ANALYSis - Profile # 11 V1 = 1250 Vz= \$000 $D = \frac{X_c}{Z} \sqrt{\frac{V_2 - V_1}{V_2 + V_1}}$ 15.8 ft Ξ X.= 37.0 $T_i = 25.1$

APPENDIX D RYE, NEW HAMPSHIRE LANDFILL SEISMIC STUDY

5.5

1.14

SDMS TEMPORARY PLACEHOLDER US EPA New England Superfund Document Management System

THIS PAGE SERVES AS A TEMPORARY IMAGE IN THIS DOCUMENT.

THE PERMANENT PAGE WILL BE INSERTED BY THE PDF TEAM.

For Further Information Regarding this Document, Please Contact the EPA New England Office of Site Remediation and Restoration Records and Information Center (OSRR RIC) 617-918-1440

APPENDIX E

CALL STATE

-207.,

and and frank the form

10.36 28.5

0.3

ROJECT NÄJ PORT SENT MPLE SENT GROUNT Dry	ME Landfil TO Gary Sh TO Dubois & O WATER OBSERVA	Main St 1 (Clos aron king Ations med. Ho Ho	sed) urs T S H H	Cha (ype Size I. D Hammer M	riesta A L(DCATION PRO. 	Concer Rye 1 J NO. JOB NO. SAM 1 140 30)'' INSPEC	LINE & STA.	-27-84 B-1A 7-84 8-84 Domingue	······
Casing Blows	Sample Depths	Type of Sample	Blow	ws për 6' Sampler To	•	Moisture Density or	Strota Change	SOIL IDENTIFICATI Remarks include color, grod	ation, Type of	SAMP	LE .
per foot	From — To	F 3-		6-12 1		Consist.	Elev.	soil etc. Rock-color, type, a ness, Drilling time, seams and		No. Pen	Rec
								Test Pit			
	10'-10'9"	SS	54	75/3"			8.0'			1 9"	8"
							13.5'	V/Den Br Coarse Sa w/Cobbles & Boulde			
	· · · · · · · · · · · · · · · · · · ·						17.0'	Weathered Ledge -	Oxidation		
	······································						1919"	Solid - Micaceous Observation Well:	Ledge		
							•	Set 20' of 1 ¹ 2" PVC Ground w/Last 10' and Covered w/Filt Ottawa Sand from 8 Bentonite Seal @ 5	of Slotted er Cloth. '-19'9" ' Depth		
								3" Steel Protectiv Grouted In w/Lock	e Casing		
SROUND SU	RFACE TO19	1.911		USED	19			THEN			
-Dry C	Cored WWas		Proj trace little	<u>,10 - 1</u>	Used o 10 o 20	× 0.10 × 10.30	140 lb. Wi ioniess Den Loose Med, Dens	0-4 Soft 30 -	ency Eo - Hard Ra	SUMMAR rith Boring ck Coring mples	<u>19.1.9''</u>

	DIECT NAJ ORT SENT	ME Landfil TO Gary Sh TO Dubois D WATER OBSERV	1 (Cl aron <u>&</u> Kin Ations	osed) 2. Hours	Type Size I. Hommi	L(sheet 1of bate 9-27-84 bate 9-27-84 hole no. B-2A inte & sta 0ffset correst 0ffset bate 9-27-84 correst 0ffset correst 0ffset bate 0ffset correst 0ffset bate 0ffset correst 0ffset bate 0ffset						
	CATION Cosing Blows	OF BORING:	Type of ample	i B	ows per Sample	6"	Moisture Density	Strata Change	SOIL IDENTIFI Remarks include color,			SAMPI	£
Iİ	per foot	Depths From To	San o F		6-12	To 12-18	or Consist.	Elev.	soil etc. Rock-color, typ ness, Drilling time, seams	e, condition, hard-	 No.	Pen	Rec
								8.0'	Test Pit Den Br Coarse S w/Cobbles & Bou	andy Gravel			
-				·				10.0'	Refusal	· ·			
-		10'					enetr.	15.0'	Roller Bit				
									Observation Wel Set 15' of 1½" Ground w/Last 1 and Covered w/F 18" Stickup Ottawa Sand from Bentonite Seal 3" Steel Protec Grouted in w/Ca	PVC Pipe in O' Slotted ilter Cloth. m 9'-15' @ 3' Depth tive Casing			
										•			
	OUND SU	RFACE TO	.0 ¹	1		5ED 15	. <u></u>	ASING: 140 Ib. W	THEN		SUM th Bor	MARY	

Coning Biown from Somple Depths from g To Blown per 6" on Sompler from Maintre Danity from Source Dange Conint Source Dange Elex Source Dange Dange Elex Source Dange Dange Elex Source Dange Dan	Main St. Dubois & King CT NAME Landfill (Clo T SENT TO Gary Sharon LE SENT TO Dubois & King GROUND WATER OBSERVATIONS of House ATION OF BORING:	rs Type Size I. D. Hammer Wt. Hammer Fall	DORESS DCATION PRC OU CASING H.S. 3 3/	Concor Rye, DJ, NO. R JOB NO. G SAM A. 2' 8'' 140	2088-84 APLER CORE BAR SURFACE DATE ST DATE ST DATE CO BORING DI BIT INSPECTO	DATE	10F1 -26-84 B-3A 6-84 6-84 Domingue
1000 10000 1000	Biows Depths to E	on Sampler From To	Density	Change	Remarks include color, gradat soil etc. Rock-color, type, cor	ion, Týpe of ndition, hard-	
	10'-11'6" SS	58 28 37			V/Den Br Sandy Silt Gravel w/Cobbles & Refusal Roller Bit Rock V/Solid Observation Well: Set 19' of 1½" PVC Ground w/Last 10' S and Covered w/Filte Ottawa Sand from 9' Bentonite Seal @ 6' 12" Stick-up 3" Steel Protective	Pipe in lotted r Cloth. -19'. Depth	2 18" 18"

C

GROUK 12'2'' 15'6'' 17'8'' 18.0'	D WATER OBSERV - Immed.af or .9-2 9-2 9-2 	ATIONS ter se 1-84 H 4-84 5-84 H	ttir purs purs	g we] Type Size I. Hamm Hamm	Ll 9-: D. er Wt. er Fall	CASING 20-84 H. 3.3/	G SAA S.A 8" <u>1</u> <u>1</u>	2088-84 MPLER CORE BAR. SURFA 2.''	CE ELEV. STARTED	9-84 0-84 Domingue
Casing Biows per foot	Sample Depths From To	Type of Sanple	Bi on From	ows per Sample	6" pr	Moisture Density or Consist.	Strata Change Elev.	SOIL IDENTIFICAT Remarks include color, grad sail atc. Rock-color, type, o ness, Drilling time, seams and	ION ation, Type of condition; hard-	SAMPLE No. Pen Rec
								No Topsoil Silty Sandy Gravel Boulders & Cobbles		
	10'-11'6"	SS	76	58	28		<u>10.0'</u>	Test Pit		
	15'	SS	100	Bloy		Penetr.	20.0'	V/Den Br Silty Coa w/Many Boulders & Refusal		
					 		23.0'	Roller Bit	· · · · · · · · · · · · · · · · · · ·	
							28.0'	Cored w/1 5/8" ID Barrel @ 28' Depth	1	
	Depths 23'-24' 24'-25' 25'-26'	Times 15		6"	ecove	rv		Observation Well: Set 26'3" of 1 ¹ 2" P in Ground w/Last 1 & Covered w/Filter	5' Slotted Cloth.	~
	<u>26'-27'</u> 27'-28'	31 m ^k 1 41 m ^k 1	<u>. </u>			Ľý		2' Stick-up - 3" S Protective Casing w/Lock - Ottawa Sa 15'-26'3" - Benton @ 5' Depth	Grouted in nd from	

.

	GROUND 36 ' 9'' 36 ' 5'' 36 ' 9''	ois & King AE Landfill Gary Shar TO Dubois & O WATER OBSERVAN 9-24-84 - Immed.Aft Well or 9-25	King HONS 36 H er In =84 H	t. sed) lours stal	Cl Type Size I. Hamme Hamme	D. B. B. B. D. B.	CASING H.S.A 3.3/8	Concord Rye, N JOB NO. SAM 1.3 140 30	/8 ¹¹ # BIT	OFFSET SURFACE ELEV. DATE STARTED	20-8 3-6A 0-84 4-84 5.Domi	4 	
	Cosing Biows per	Sample Depths From — To	Type of Sample	I BI	ows per Sampli	· 6''	Moisture Density or Consist.	Strata Change	SOIL IDE Remarks include co	NTIFICATION lor, grodation, Type of type, condition, hard-		SAMPLI	E Roc.
	foot								No Topsoil Test Pit Dor Boring				
		10'-11'6"	SS	28	24	17	-			y Sandy Coarse obles & Small		18"	10"
15' 15'		15'-16'6"	SS	18	28	56	•			:		118"	
		20'-21'6"	SS · ·	28	52	91							Lost
		25'-26'6"	55	48	38		•ist					18'	13"
	· · · · · · · · · · · · · · · · · · ·	35'6"-36'		120	, <u>, , , , , , , , , , , , , , , , , , </u>		-	<u>38'6''</u>		38'6"-39'4" - 1 Plugged -	6	6"	2"
		SURFACE TO4.	31.61	 	Process	USFD 4	1		Ledge V/Sof THEN Cored. 8. Wt. x 30% fall on 2"	t	-	JAMAS	4,3.1.6.1
-				10	Propor xe 11a me	0 to 1 10 to 2 20 to 3	0% 0-1 0% 10-3	O Mod. De	0-4 S 4-8 M	ioft 30 + Hord	Rock C Sample	oring }	<u>}</u>

ORT SENT GROUN 6'9" 5" - 4	TO Dubois TO Dubois WATER OBSERVA 9/24/84 Ifter Insta	aron & Kin MIONS 36 1.Wel	osed) g Hours 1	Type Size I.	LC		Rve, N DJ. NO R JOB NO.	, NH H 2088-84 APLER CORE BAR SUI DA' 3/8" 04" BIT	DATE	B-6. -84 -84 Domin	A	
	ot <u>9-2</u> :								LS ENGR			
CATION Cosing	OF BORING	<u></u>	I B		6"	reakfas Moisture	tHill Strata	SOIL IDENTIFIC	ATION			
Biows per	Sample Depths From — To	Type of Sample	From	Sample	To	Density or Consist.	Change Elev.	Remarks include color, g soil etc. Rock-color, type	, condition, hard-		SAMPI	- i
foot			0.6	6-12				ness, Drilling time, seams o		NQ.	l Pen	Rec.
		· · · _=					41'8"	Br Clay & Decayi Roller Bit to 43				
								Ledge - Difficul	t to Flush		<u> </u>	
	41'4"-41'8	"ss	84				43'6"	Out - No Return	of Water	7	4"	4"
						•		OBSERVATION WELL	:			
	· - · · · · · · · · · · · · · · · · · ·		<u> • .</u>		<u>.</u>			Set 42' of 1'z" P	VC Pipe in			
			 	1				Ground w/10' Slo	tted and			
	·							Covered w/Filter Ottawa Sand from				
			 			•		Bentonite Seal @				<u>.</u> .
			<u> </u>			5 		1' Stick-up				
-								1 - J" Steel Pro Casing Grouted i				
	<u></u>					4 ¹				<u> </u>		
		l								. <u>.</u>		
								t.				
	·											
	······································											
									1			
	<u></u>	· · ·				. · ·						
				·								
		ļ	<u> </u>									
			ļ					×			-	
												-
]											<u> </u>	
												[
	RFACE TO4.5	ļ	l			3 <u>6</u> "		THEN COLED.8"		L	<u> </u>	l

DIECT NAN HOLT SENT WRE SENT GROUNI	bois & King ME Landfill TO Gary Sha TO Dubois & D WATER OBSERVA of afte	(Clo ron King Hons r Bai	it. (sed) (s	Cl Type Size I. Hamme	harlesta A 	CATION PRO OUR CASING H.S.A	Concor Rye, 1 J NO. JOB NO. SAM 1 3 140	2088-84 PLER CORE BAR. SURFACE DATE ST DATE CO BORING BIT INSPECT	SHEET	24-84 B-7A 4-84 5-84 5-84	ngu	R
Cosing Biows	OF BORING: Sample Depths	Type of Sample	I BI	iows per n Sample		Moisture Density or	Strata Change	SOIL IDENTIFICATIO Remarks include color, gradat soil etc. Rock-color, type, co	tion, Type of		AMPL	
foot	From To	~ X	0.6	6-12	12-18	Consist.	Elev.	ness, Drilling time, seams and e		<u>No.</u>	Pen	Rec
	10'-11'6"	SS	16	27	27		10.0'	No Topsoil Test Pit			18'	12"
	15'-16'6" 20'-21'6"	SS SS SS	<u>19</u> <u>37</u>	29	18		24.0'	V/Den Br Coarse San Gravel w/Cobbles & (Layered)				7"
	25'-26'6"	SS	15	21	32		28.0'	Den Br Layers of Fi Sand & Gravel	ne-Coarse	1	18''	15"
	30'-31'6"		18	28				Den Br Silty Fine S	Sand			15"
	35-35'8"		enet			Wet		Stiff Gray Layers of Silt & Sand Roller Bit from 35 Fractured & Weather	6"-42'-	6	6''	<u>6</u> "
Ch Type	-Cored W-Was		1	Proportic •	USED	0-10	140 lb. W stanless De	0.4 Soft 30 +	ler ency 1 Hard 1		ing 2	12.0'

1. 2711

Somple Depths Biowr per 6' Manuar Status Soul UBNINCATION per from _ To 0.6 0.12 12.11 Change or billing time starts include color, gradation, Type of color time, color	T NAMI T SENT TO E SENT T GROUND 37'4"	Dubois & Ki E Landfill Garv Sha Dubois & WATER OBSERVA Gafter	L (Cl aron & Kin; MIONS Bail;	osed) 8 Hours	Type Size 1. D. Hammer Wt. Hammer Fall	ADDRESS OCATION PRO OUI CASINC H.S .3.3/.	Concor Rye, 1 J. NO. JOB NO. SAM A. B.'' 1. 140 30	IPLER CORE BAR. 2 ¹¹	DATE9- HOLE NO. B	4-84 5-84 • Domingue
Description Description Descrint	asing				lows per 6"	Moisture Density	Strata	Remarks include colo	r, gradation, Type of	SAMPLE
OBSERVATION WELL: OBSERVATION WELL: Set 40' of 1½" PVC Pipe w/ Last 12' Slotted & Covered W/Filter Cloth - 12" Stick-up Ottawa Sand from 32'-44' Bentonite Seal @ 5' Depth 3" Steel Protective Casing Grouted in w/Lock	per	From To	San of	From 0.6			· · · •			No. Pen Rec
Last 12' Slotted & Covered w/Filter Cloth - 12" Stick-un Ottawa Sand from 32'-44' Bentonite Seal @ 5' Depth 3" Steel Protective Casing Grouted in w/Lock						-		OBSERVATION W	ELL:	
3" Steel Protective Casing Grouted in w/Lock						-		Last 12' Slot w/Filter Clot	ted & Covered h - 12" Stick-u	p
						•		3" Steel Prot	ective Casing	
						-			•	
									•	
		· · · · · · · · · · · · · · · · · · ·				- - -				
						-			• •	
						- - -				
IND SURFACE TO		· · · · ·				-				

;

11 B.

Cannot be prime per test Sample (as born - To per test Blow per br (b school) Monitore per test from Sample (b school) Soull DENTIFICATION Leader Lander Geler, production, hered inst. Dulling time seams and etc. SAMPLE Image: Sample per test from Image: Sample from Image: Sample from Image: Sample from	CIECT NA POLT SENT UNE SENT GROUN Dry	ME Landfill TO Gary Sha TO Dubcis of D WATER OBSERVA of Imme r setting ca	l (Clo aron & King Allons ed. H asing	it. DSED) lours	Type Size I. Hamm	harlesta AL(D. er Wt. er Fall	CATION	DJ. NO R JOB NO. S SAM A. 2' 8.'' 1 14/ 30	J.8." DATE D# BIT D" SOIL	LINE & STA	26-84 B-8A 6-84 6-84 Domingu	e
foor interf interf <th>Blows</th> <th>Depths</th> <th>Type of ample</th> <th>or From</th> <th>Semple</th> <th>er T<u>o</u></th> <th>Density of</th> <th>Change</th> <th>Remarks include color, gra soil etc. Rock-color, type,</th> <th>adation, Type of condition, hard-</th> <th></th> <th></th>	Blows	Depths	Type of ample	or From	Semple	er T <u>o</u>	Density of	Change	Remarks include color, gra soil etc. Rock-color, type,	adation, Type of condition, hard-		
Gray Silt & Clay Layers - 15' SS 50 Blows - No Penetration Soft Micaceous Ledge - Roller Bit 20.0' OBSERVATION WELL: Set 20' of 1½" PVC Pipe in Ground w/Last 10' Slotted & Covered w/Filter Cloth - 12" Stick-up - Ottawa Sand from 14'-20' - Bentonite Seal @ 6' Depth - 3" Steel Protective Casing Grouted		10'-11'6"						10.0'		e Sand w/		3'.18
Set 20' of 1½" PVC Pipe in Ground w/Last 10' Slotted & Covered w/Filter Cloth - 12" Stick-up - Ottawa Sand from 14'-20' - Bentonite Seal @ 6' Depth - 3" Steel Protective Casing Grouted		15*				the second s			(Sand Lavers Moi. Den Br Coarse Sa w/Cobbles-Clay L Soft Micaceous L	st) ndy Gravel avers		
									Set 20' of 1½" P Ground w/Last 10 Covered w/Filter 12" Stick-up - 0 from 14'-20' - B Seal @ 6' Depth Protective Casin	VC Pipe in 'Slotted & Cloth - ttawa Sand entonite - 3"Steel		

APPENDIX F

BORING LOCATIONS, BEDROCK AND WATER TABLE CONTOURS

SDMS TEMPORARY PLACEHOLDER US EPA New England Superfund Document Management System

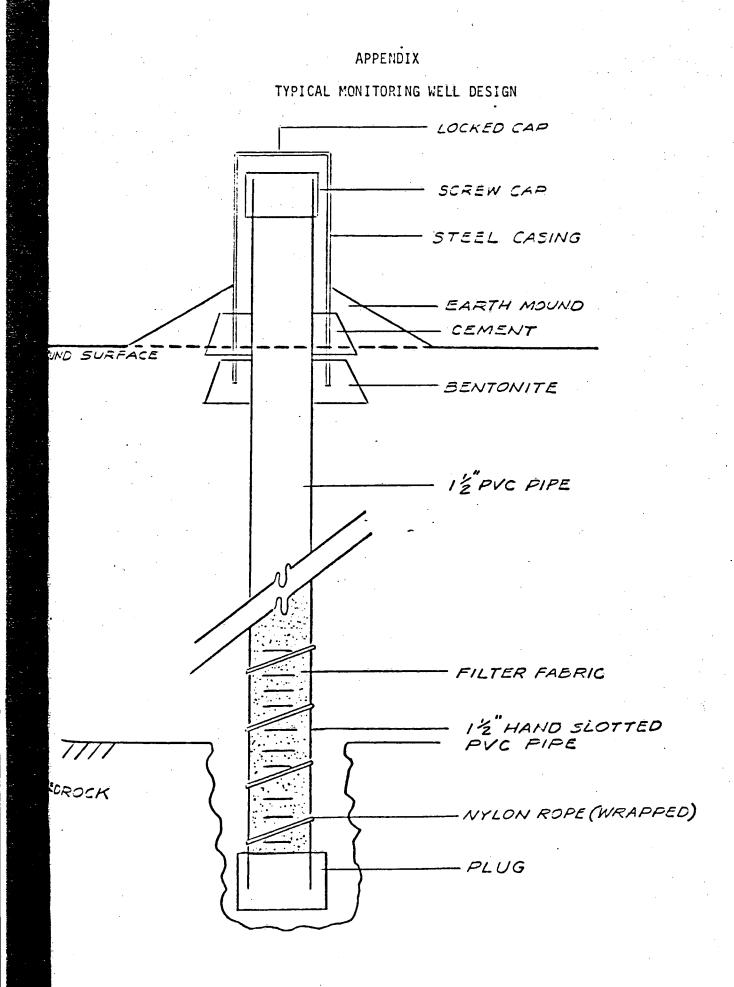
THIS PAGE SERVES AS A TEMPORARY IMAGE IN THIS DOCUMENT.

THE PERMANENT PAGE WILL BE INSERTED BY THE PDF TEAM.

For Further Information Regarding this Document, Please Contact the EPA New England Office of Site Remediation and Restoration Records and Information Center (OSRR RIC) 617-918-1440

and a second second

al second second


ha an a state

المعرب بمناشق وعشره

APPENDIX G TYPICAL MONITORING WELL DESIGN

N. K.

A. PART

and the state of the second

APPENDIX H

3. A second s

建筑建筑的高速设备

WATER QUALITY RESULTS SUMMARY

de Palinde

1.47

20. 1. 16

in the second

1. 36

的名词复数

RYE CF

		ite Well			On-Site	Wells	
D	Breakfast	Home	Sherwin	Test	Test	Test	Safe
Parameter	<u>Hill</u>	Center	Wash Rd.	<u>Well #1</u>	Well #4A	Well #6A	<u>Limit</u>
pH (Su)	7.7	8.65	8.05	6.95	6.55	6.7	6.5-8.5
Conductivi	tv						
(umhos/cm)	340	390	. 320	1,140	820	1,700	NS
COD	16.0	4.3	6.1	30.7	51.4	101	NS
Chlorides	69.5	44.0	48.5	148	25.0	245	250
Nitrate-N	5.44	0.29	0.19	0.21	1.33	0.78	10.0
Iron	<0.22	0.11	0.46	0.72	64.1	35.9	0.3
Manganese	<0.01	0.03	0.07	18.9	9.03	7.94	0.05
Methylene							
Chloride	NT	NT	NT	0.017	0.012	0.004	0.15*
Acetone	NT	NT	NT	0.022	0.024	0.014	NS
THF	NT	NT	NT	ND	0.031	0.018	NS
Benzene	NT	NT	NT	0.004	0.004	0.005	0.035*
Toluene	NT	NT	NT	ND	0.005	ND	NS
Ethyl Benzene	NT	NT	NT	ND	0.004	0.007	NS
Xylene	NT	NT	NT	ND	0.010	0.010	0.620*

WATER QUALITY RESULTS SUMMARY

All results are reported in mg/l unless otherwise noted.

NS - No standard set

ND - None detected

NT - None tested

* - Based on SNARLS per Ws 302.08(a)(2)

ENGINEERING & ENVIRONMENTAL SERVICES

Route 66 Randolph, Vermont 05060 (802) 728-3376

WATER & WASTEWATER LABORATORY

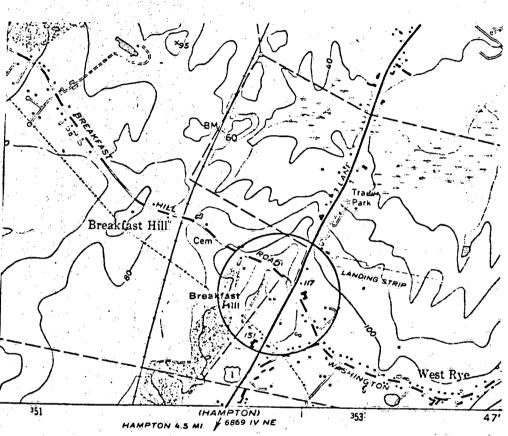
Job No: 46501	Lab Sample No: 17-85	
NAME: <u>Rye Landfill</u> ADDRESS: <u>Rye, NH</u>	SAMPLE SOURCE: COLLECTION DISTRIBUTION: POINT OTHER:	
DATE OF SAMPLE: TIME:	SAMPLED BY: Steve LaFrance	
DATE RECEIVED: 1/16/85	ANALYZED BY: RJM & SRH	
REMARKS: Three water samples for analy		

RESULTS (Expressed in milligrams/liter (mg/l) except when noted)

<u>Test Parameter</u>	<u>#1-Breakfast Hill</u>	#2-Home Center	# <u>3-Sherwin Wash Rd.</u>
pH (Su)	7.7	8.65	8.05
Conductivity (umhos/	zm) 340	390	320
Nitrate-N	5.44	0.29	0.19
COD	16.0	4.3	6.1
Iron	<0.02	0.11	0.46
Manganese	< 0.01	0.03	0.07
Chlorides	69.5	44.0	48.5

Respectfully submitted,

Ronald J. MacBruce Assistant Laboratory Director


APPENDIX I

17:55

小编剧学生

APPROXIMATE 1,000 FOOT RADIUS AROUND THE LANDFILL SITE

APPROXIMATE 1,000-FOOT RADIUS AROUND THE LANDFILL SITE

